
G
L

O

W
o

r

k

B
U

S

s

.
.

.

By V.K
azim

irc
hik

T
h

i
s

i
s

H
O

W

Contents

1 Preface 5

2 Model Bank – installation 6

3 Does it work straight away? 8

4 What’s next? 17

5 Shortcuts, applications basics 18

6 Application data, LIVE and NAU files, record status, audit
trail, LIST basics, INT applications 20

7 FIN and CUS applications, history file, “F” VOC entries,
COMPANY, EVAL in LIST 25

8 SELECT and SELECT lists, COUNT, “SAVING” and “UNIQUE”
in SELECT 32

9 More navigation in Classic 36

10 Introduction into programs and subroutines, conclusion for
applications 38

11 Introduction into OFS, more about functions, setup OFS.SOURCE,
tSS, simple enquiry output 40

2

12 OFS – inputting an application record: VERSION creation,
“VALIDATE” option, couple of tests, STANDARD.SELECTION
check 46

13 Writing a simple T24 subroutine 49

14 Getting application information from a routine 55

15 OFS – application record creation – continued, overrides,
fields GTS.CONTROL and NO.OF.AUTH 56

16 VERSION routines – AUT.NEW.CONTENT, R.NEW, ap-
plication insert file 61

17 OFS.REQUEST.DETAIL 67

18 Manual transaction input in comparison with OFS, GTSAC-
TIVE variable 69

19 Browser client – jboss, jBASE agent, logging in 73

20 Transaction input under Browser, debugging 78

21 TODAY variable, date format in T24, edit mode in Classic,
API for dates manipulation 82

22 Global variables again – their lifetime, writing a PROGRAM,
CRT 85

3

23 CHECK.REC.RTN – error raising, other VERSION routines
– notes 87

24 Programming language overview, writing a simple game 89

25 Local applications, code rating, enrichment, AUTO.ID.START,
SEARCH, jBASE file types, jstat 100

26 File I/O 111

27 Changing structure of a local application – amending field
type 119

28 Records locking 122

29 Programming for enquiries 123

30 Performance, code analysis, local fields, DYNAMIC.TEXT 128

31 I-descriptors 143

32 COB programming 147

33 Linux 167

34 Java and jRemote 171

35 Conclusions 181

4

1 Preface

S uddenly it came to my mind that it’s already 10 years that I work with

Temenos product T24. Of course it wasn’t T24 all those years... It was
Globus previously and I’ve started with G10 release of Globus. Now it’s R10
release of T24.

So I thought it’s a good idea to share some things that came to my atten-
tion during this time (because if I don’t I’ll surely forget it all myself). Being
a technical person, I address this book mainly to techies, though business
guys might also find something for them.

The phrase “This is how Globus works” is well-known to anyone who
worked with Globus and I decided that it’s a very appropriate title.

It will mostly be a case study (all cases real, some of them too real)
– far from what regular training provides. Probably it can be seen as an
addition to regular training, sometimes expanding beyond “pure” T24 – sort
of a collection of tips, tricks, hand-ons, how-tos etc.

I’ve noticed that for a beginner it’s not easy to understand what belongs
where – like “where user access is supported – at DB or application level?”
etc. And for a person who knows jBASE or Universe well it’s a bit embar-
rassing to learn that some thing absolutely valid in “pure” jBASE doesn’t
work in T24 environment (like adding something to dictionary manually – it
lives only until STANDARD.SELECTION record is rebuilt next time). So
I’ll try to close this gap (and hopefully some others).

Note: all views, opinions etc are mine, not of my employer. Solutions
and code lines (mostly) are mine as well, unless stated otherwise. You also
agree that you use the samples provided with full understanding what you’re
doing – i.e. at your own risk. T24 is unpredictable in its changes and what
worked perfectly well in one release will not work in another – or, worse,
might harm your system.

It’s a good idea to try all this on a virtual machine first...

5

Many things described here you can find in some manuals, many are
not described anywhere to my knowledge. Hope you’ll find something useful.
You’ll see me digressing a lot but it’s all intentional.

To my experienced colleagues: don’t consider it as something like “T24
for dummies”. Feel free to skip what you already know (though you might
find something new even there). Be sure that you’ll find many places that
will be a surprise for you.

Enjoy!

All trademarks are the property of their respective owners.

Ok, where do we start?

2 Model Bank – installation

Y ou need to have some T24 environment. Preferrably Model Bank. The

samples will be mosty based on R10, however older releases will do as well.

Firstly let’s put things in their place. Create a directory at your C: drive
(we’ll cover Linux as well but for time being it’s Windows). At my laptop
this directory is called temenos. Then – create R10 subdirectory in it (we
might need other releases as well, and, for example, TAFC for R10 is different
from TAFC for R09). So it’s better to have all the things in one “package”
that you’ll be able to move to another laptop or PC just copying it, if needs
be.

Depending on what you’ve got from distribution you’ll only need to ex-
tract the contents to appropriate subdirectories of c:\temenos (which is
IMHO preferrable) or, maybe, to proceed with TAFC installation first. In
both cases you end up with the following components:

a) TAFC – new name for jBASE. I still prefer to call it “jBASE”. TAFC

6

is very similar to jBASE 5.x. (in c:\temenos\R10\TAFC) – note that once
you’ve installed TAFC you can move it to another location, but keep in mind
telnetd issue:

You’ll need telnetd.exe and a teminal emulation program (like Reflec-
tion or PuTTY) to run so-called “Clobus Classic” which in my opinion is
a must for a T24 techie. Of course you can run it from Windows shell but
in most cases the output will be ugly (no terminal command sequences sup-
ported, at least under XP) and terminal emulators also allow to map certain
keys to help you to navigate in Globus Classic.

So where to find telnetd.exe? In some TAFC installations it presents
and you can activate it by the following commands (firstly deactivate an old
one in case you need to move the whole TAFC directory or remove older
TAFC altogether):

cd c:\temenos\R10\TAFC\bin
telnetd stop

telnetd remove

telnetd install

telnetd start

If you don’t have it in bin subdirectory – find an older jBASE 4.x or 5.x,
install it and use telnetd.exe located there. Windows telnet service lacks
the feature of auto-starting remote.cmd file (probably it can be catered to
do that but I never needed it).

An alternate way is to install free ssh server for Windows and use ssh
client like PuTTY.

b) Model Bank environment (c:\temenos\R10\mb10). There you ex-
tract contents of bnk directory that you find in a distribution package. I
usually prefer not to retain bnk directory itself so we end up with folders like
c:\temenos\R10\mb10\bnk.data, c:\temenos\R10\mb10\bnk.run etc.

c) C compiler. We’ll definitely need it in many cases. MS Visual Studio
.Net 2003 will be enough. To avoid a path with space in it (like c:\Program

7

Files etc), it makes sense if you copy its bin, lib and include directories
into c:\temenos\compile. We’ll see later how to set up things to be able to
compile your source code.

d) Java SDK, preferrably 1.6. I have mine at c:\temenos\jdk1.6.0 17

(since it’s common thing I have it not under c:\temenos\R10 but one level
up).

e) jboss 4.2.3 GA in c:\temenos\R10\jboss. We’ll need it later when
we experiment with Browser client.

f) Batch files to start different components necessary for Browser in
c:\temenos\R10\BATfiles.

g) Windows user to log in via telnet (again, if you prefer running
remote.cmd under windows shell, you don’t need it). People usually assign
administrative rights to this user but it’s better not to do it. Instead, create a
group (I call it t24users), assign full control rights to directory c:\temenos
for this group and then create your user (mb10 is the name used here but it of
course can be any). Then assign mb10 user to the group t24users. Don’t for-
get to put the path to your bnk.run (e.g. c:\temenos\R10\mb10\bnk.run)
to “Local Path” field of “Profile” tab.

If you copy some files into c:\temenos directory, your group rights are
OK. If you move files there or if you install something right there, reassign
the group rights for new directories and files, otherwise you’ll end up with
error messages like “Error creating user object’’ (whatever that might
mean).

3 Does it work straight away?

F irstly correct remote.cmd file. What to look at (corrected is in blue

colour):

8

set HOME=c:\temenos\R10\mb10\bnk.run
set TAFC HOME=c:\temenos\R10\TAFC
set JBC CCOMPILER PATH=c:\temenos\compile
set JAVA HOME=c:\temenos\jdk1.6.0 17

set PATH=%TAFC HOME%\bin;%HOME%\bin;%HOME%\t24bin;
C:\windows\system32;%JAVA HOME%\bin

Make sure that path to TAFC bin directory goes before Java bin folder.
Hint: there are 2 different jstat.exe programs in these 2 directories and
some jBASE utilities implicitly run jstat.exe.

set JBASE LOCALE=en US

Make sure that it’s en US otherwise you most probably wouldn’t be
able to log in on a system with non-English locale (day and month will
be swapped).

set JBCSPOOLERDIR=%HOME%\jspooler

We’ll see later how to initialise the spooler so it wouldn’t spit errors like
‘‘** Error [NO PRINTER] **’’.

Now, let’s start Reflection, input user name and password...

START GLOBUS Y/N=

Press Enter...

<Your ’TELNET’ connection has terminated>

Something is wrong... What?

Firstly let’s see the actual error message. Edit the file remote.cmd

in bnk.run directory. At the very end of it comment the line containing

9

‘‘jprofile.bat’’ and put there cmd instead. Log in again. You’ll see
Windows shell prompt:

c:\temenos\R10\mb10\bnk.run>

Type jsh

Output – something like:

The system cannot execute the specified program.

To see what it needs you can use a tool like ”Dependency Walker” to
open the file libTAFCfrmwrk.dll in c:\temenos\R10\TAFC\bin. What we
see is the error message:

Error: The Side-by-Side configuration information

for "c:\temenos\R10\TAFC\bin\LIBTAFCFRMWRK.DLL"
contains errors. This application has failed to start

because the application configuration is incorrect.

Reinstalling the application may fix this problem

(14001).

Don’t try to reinstall application – this will not fix the error.

After some googling it’s evident that we need to install so-called “Visual
C++ 2005 Redistributable package” from Microsoft. If you installed TAFC
rather than extracted it, you might have noticed that “vcredist” installation
was triggered as well... Then it was wrong package included to this particular
TAFC installation.

How to find out which package we need? Take a look into
libTAFCfrmwrk.dll. Search for the following text: Microsoft.VC80.CRT.
Ok, here. After that text goes something like: version=‘‘8.0.50727.4053’’
– that’s all we need.

Search for the package, download it, install. Log in again.

10

Type jdiag to see if all is OK and what parameters we have in our
jBASE installation (I said I call it jBASE but I’m not alone – jdiag claims
to be a “jBASE diagnostic”):

11

jdiag - jBASE diagnostic ’$Revision: 1.15 $’

System Information ==================

System : WinNT QWERTY 5.1 i386

OS Release : Windows XP Pro, Build 2600, Service Pack 3

NT User : mb10

Time : Wed Oct 06 15:35:07 2010

Environment ===========

JBCPORTNO : Not Set

TAFC HOME : ’C:\temenos\R10\TAFC’
JBCGLOBALDIR : ’C:\temenos\R10\TAFC’
WARNING: JBCDATADIR is not set,

Default ’C:\temenos\R10\TAFC\jbase data’

WARNING: JBCDATADIR is subdirectory of JBCGLOBALDIR

HOME : ’c:\temenos\R10\mb10\bnk.run’
JEDIFILEPATH : ’c:\temenos\R10\mb10\bnk.run’
JEDIFILENAME MD : ’VOC’

JEDIFILENAME SYSTEM : ’C:\temenos\R10\TAFC\src\SYSTEM’
SYSTEM File is (DICT) :

’C:\temenos\R10\TAFC\src\SYSTEM]D’
RELEASE Information : Major 10.0 , Minor 0.2 , Patch

(Change 89685)

Spooler dir (JBCSPOOLERDIR) :

’c:\temenos\R10\mb10\bnk.run\jspooler’
JBCEMULATE : ’prime’

TEMP file path : ’C:\WINDOWS\TEMP\’
Object path (JBCOBJECTLIST) :

’c:\temenos\R10\mb10\bnk.run\lib;
c:\temenos\R10\mb10\bnk.run\t24lib’
WARNING: From checking the registry, It appears that VC++ is

not loaded

WARNING: JBC CCOMPILER PATH is set to ’c:\temenos\compiler’
jBASE Compiler Run-time :

’C:\temenos\R10\TAFC\config\system.properties’
Program dir (JBCDEV BIN) : ’c:\temenos\R10\mb10\bnk.run \bin’
Subroutine dir (JBCDEV LIB) : ’c:\temenos\R10\mb10
\bnk.run\lib’

You can ignore warnings. Pay attention to “RELEASE Information” –

12

you might need it when reporting a bug.

Now type jsh.

ERROR! Maximum concurrent licensed user limit exceeded

What now? Take a look into the following file:

c:\temenos\R10\TAFC\config\system.properties – look at the very
end. The last line of it most probably looks like:

jruntime.license = qP2XhdjqbdbiqzvfDBgPisP3ITiDfhyT

After that line you have to add the licence – you need to obtain it from
Temenos. Let’s assume you have it. Put the licence line after the last one,
save the file and try to log in again. Then type jsh. Now we’re finally there!
At last...

c:\temenos\R10\mb10\bnk.run>jsh ←↩

jsh mb10 ~-->

Let’s return jprofile.bat call to remote.cmd and log in once again to
double-check. You’ll have jsh prompt right away.

Before we continue, it’s necessary to initialise jBASE spooler. If directory
jspooler in bnk.run doesn’t exist, create it. Then type:

SP-NEWTAB

The screen looks like:

13

This operation deletes ALL print jobs and print

queues, and re-creates a new spooler with the following

criteria:

1) Spooler directory = c:\temenos\R10\mb10\bnk.run\
jspooler

2) Default security of form queues = CREATOR

3) Default security of print jobs = CREATOR

4) Other owners of spooler =

Enter options 1) to 4) to modify, C to continue or Q to

quit :

Type C and press Enter:

Enter options 1) to 4) to modify,

C to continue or Q to quit : C ←↩

[417] File c:\temenos\R10\mb10\bnk.run\jspooler\jobs]D
created, type = UD

[417] File c:\temenos\R10\mb10\bnk.run\jspooler\jobs
created, type = UD

[417] File c:\temenos\R10\mb10\bnk.run\jspooler\
jspool log]D created, type = J4

[417] File c:\temenos\R10\mb10\bnk.run\jspooler\
jspool log created, type = J4

Spooler RESTART completed

Let’s try to log in into T24 Classic. To do that type:

EBS.TERMINAL.SELECT EBS-JBASE

or:

ETS

14

As a result, you see the output:

Terminal type set to EBS-JBASE

Stop, stop... where “ETS” comes from? Is it an internal command?

No. Now it’s time to look at VOC table that is located in the current
directory (which is ‘‘bnk.run’’).

Type: CT VOC ETS

The output:

ETS

001 PA

002 EBS.TERMINAL.SELECT EBS-JBASE

So now you know that in VOC there are records with type “PA” where
you can store a command (or several commands).

To log in to T24 type EX, input T24 user name and password (you can
find it in passwords.txt if you have Model Bank package or use some well-
known standard login as INPUTT/123456) . If you’re not allowed to log in,
probably end.date.profile field in USER application contains a date in
the past, e.g.:

15

jsh mb10 ~-->LIST F.USER ’INPUTTER’ ←↩

LIST F.USER ’INPUTTER’ PAGE 1 12:08:53 07 OCT 2010

@ID................. INPUTTER

@ID................. INPUTTER

USER.ID............. INPUTTER

USER.NAME........... INPUTTER

SIGN.ON.NAME........ INPUTT

CLASSIFICATION...... INT

LANGUAGE............ 1

COMPANY.CODE........ GB0010001 EU0010001 SG0010001

GB0010002 GB0010003 GB0010004

DEPARTMENT.CODE..... 1

PASSWORD.VALIDITY... 20090801M0601

START.DATE.PROFILE.. 20080122

END.DATE.PROFILE.... 20091202

START.TIME.......... 1

Good news is that you can edit this field (that’s why in production system
no user shall be granted the access to jsh). How to do this – we’ll see later.

Other good news is that even in R10 you still can work in terminal
environment. Of course some modern things like composite screens will not
work but regular input screens (called VERSIONs) or inquiries (ENQUIRY)
most probably will.

If you get the following error, get new maintenance code (again from
Temenos):

Maintenance license expired, enter new code (20100316

EURGBTMNS000)

If all is OK, we find ourselves logged in. See the screen:

16

R10 Model Bank SELECT APPLICATION

- LAST SIGN.ON, DATE: 30 JUN 2010 TIME: 11:53 ATTEMPTS: 0 -

07 OCT 2010 12:14:19 USER (05 JAN) VLADIMIR.K [1103,IN]

ACTION

AWAITING APPLICATION

4 What’s next?

T hroughout this book we’ll try to understand:

• What’s inside.

• How it works.

• How it can be set to work if it doesn’t.

17

5 Shortcuts, applications basics

L og out from T24 for time being. To do that type BK or PGM.BREAK

at AWAITING APPLICATION prompt. You might notice that we again have a
shortcut for a command. This time it’s not VOC entry but the application...

What’s an application after all in T24 context? The answer is: it’s a
combination of at least one subroutine containing table structure and busi-
ness logic (based on so-called “template”), one or several data files (read –
jBASE tables), dictionary file and several setup records. You’ll be surprised
to know that setup records and data records actually are stored the same way
– setup records in setup applications and data records in data applications
(both types of applications doesn’t differ at all).

Are you still there? Let’s try to illustrate. The shortcut “BK” is stored in
application ABBREVIATION as a record and BK is its id (id is often referred
to as @id). Let’s see it. Type ABBREVIATION at AWAITING APPLICATION

prompt. Then – S at AWAITING FUNCTION prompt. Then – BK at AWAITING

ID prompt.

Note: in this book all that is an application (in T24 context) is written
in slanting text like this: ABBREVIATION, field names will be in small caps
(e.g. end.date.profile); everything else that is to stand out of the text in
order to catch your eye (commands, file names etc) is like THAT.

Could we access the record faster? Yes, typing ABBREVIATION S BK at
AWAITING APPLICATION prompt. So, in both cases we see the following
screen:

18

R10 Model Bank Abbreviation SEE

ABBREVIATION.CODE. BK

--

1 ORIGINAL.TEXT..... PGM.BREAK

3 CURR.NO........... 1

4. 1 INPUTTER...... 46 AUTHORISER

5. 1 DATE.TIME..... 14 MAR 09 16:29

6 AUTHORISER........ 46 INPUTTER

7 CO.CODE........... GB-001-0001 R10 Model Bank

8 DEPT.CODE......... 1 Implementation

--

12 OCT 2010 12:56:43 USER (05 JAN) VLADIMIR.K [9187,INPAGE 1

ACTION

AWAITING PAGE INSTRUCTIONS

So every time you type BK at AWAITING APPLICATION prompt it’s the
same as if you’ve typed PGM.BREAK.

Now we need to get back to AWAITING APPLICATION prompt. If you have
your keys mapped, just press F1 twice. If they are not – you press:

Ctrl -U ←↩

After first iteration you go back to AWAITING ID prompt, after the second
– at AWAITING APPLICATION prompt. Type BK now and we’re back at jsh:

jsh mb10 ~-->

19

6 Application data, LIVE and NAU files, record

status, audit trail, LIST basics, INT appli-

cations

Y ou’re already familiar with application ABBREVIATION. Let’s see

which jBASE table (or tables) held data for this application.

In jsh type LIST F.ABBREVIATION.

The screen is:

20

LIST F.ABBREVIATION PAGE 1 13:35:41 12 OCT 2010

@ID............... AGC

@ID............... AGC

ABBREVIATION.CODE. AGC

ORIGINAL.TEXT..... ACCT.GEN.CONDITION

RECORD.STATUS.....

CURR.NO........... 1

INPUTTER.......... 1 ATB.DIM.MBPARAM-200812.003

DATE.TIME......... 0904100108

AUTHORISER........ 3 INPUTTER

CO.CODE........... GB0010001

DEPT.CODE......... 1

AUDITOR.CODE......

AUDIT.DATE.TIME...

@ID............... COMM

@ID............... COMM

ABBREVIATION.CODE. COMM

ORIGINAL.TEXT..... FT.COMMISSION.TYPE

RECORD.STATUS.....

CURR.NO........... 1

INPUTTER.......... 1 ATB.DIM.MBPARAM-200812.003

DATE.TIME......... 0904100108

...etc

Long output? Press Q to stop it.

If we want our particular record, we can use the following command:
LIST F.ABBREVIATION ’BK’. To save typing, use key ↑ on your keyboard
to return the previous command and edit it.

21

LIST F.ABBREVIATION ’BK’ PAGE 1 13:42:22 12 OCT 2010

@ID............... BK

@ID............... BK

ABBREVIATION.CODE. BK

ORIGINAL.TEXT..... PGM.BREAK

RECORD.STATUS.....

CURR.NO........... 1

INPUTTER.......... 46 AUTHORISER

DATE.TIME......... 0903141629

AUTHORISER........ 46 INPUTTER

CO.CODE........... GB0010001

DEPT.CODE......... 1

AUDITOR.CODE......

AUDIT.DATE.TIME...

1 Records Listed

Why “F.” prefix? In this case prefix “F.” is attached to application name
to form the name of “LIVE” file.

More questions from this point:

• What are other cases?

• What’s “LIVE” file?

In T24 there are several types of applications. ABBREVIATION has the
type ‘‘INT’’ and we can see it in its record in FILE.CONTROL (which is
also an application). So use LIST command again (with slight change to see
not all fields but particular one):

jsh mb10 ~-->LIST F.FILE.CONTROL ’ABBREVIATION’

CLASSIFICATION ←↩

Please note that the command line is wrapped – this can happen not
only because of page width limitation here but in real life too. Put attention

22

to key ←↩ to see where command ends.

Output:

LIST F.FILE.CONTROL ’ABBREVIATION’ CLASSIFICATION PAGE 1

14:05:26 12 OCT 2010

@ID..................................... CLASSIFICATION

ABBREVIATION INT

1 Records Listed

‘‘INT’’ here means that this file has prefix “F.” and is used throughout
all the environments (i.e. in all companies). We’ll see later what a company
is in T24 context.

Another field of FILE.CONTROL application is of interest to us. It’s
suffixes.

jsh mb10 ~-->LIST F.FILE.CONTROL ’ABBREVIATION’

SUFFIXES ←↩

LIST F.FILE.CONTROL ’ABBREVIATION’ SUFFIXES PAGE 1

14:12:50 12 OCT 2010

@ID..................................... SUFFIXES

ABBREVIATION $NAU

1 Records Listed

It means that this application, besides “LIVE” (read – regular) file, has
another file for unauthorised records. When you input and commit a record
in T24, it doesn’t necessarily mean that this record goes directly to “LIVE”
file. Normally, another person is to access this record as well and “authorise”
it. Of course, it can be yourself logged in as another user, or you can use a
“zero-authorisation” input screen (or “VERSION” – not very relevant name
for input screen but that’s how it is in T24).

23

“NAU-file” has its name the same as “LIVE” with addition of $NAU to
the end:

jsh mb10 ~-->LIST F.ABBREVIATION$NAU ←↩

LIST F.ABBREVIATION$NAU PAGE 1 14:22:28 12 OCT 2010

@ID............... QWERTY

@ID............... QWERTY

ABBREVIATION.CODE. QWERTY

ORIGINAL.TEXT..... ASDFG4

RECORD.STATUS..... INAU

CURR.NO........... 1

INPUTTER.......... 5 VLADIMIR.K OFS BROWSERTC

DATE.TIME......... 1006240943

AUTHORISER........

CO.CODE........... GB0010001

DEPT.CODE......... 1

AUDITOR.CODE......

AUDIT.DATE.TIME...

1 Records Listed

Now put your attention to the field record.status. Here it means
that to get into “LIVE” file this record is to be authorised. Other widely
used status codes are “empty” (i.e. this field doesn’t contain a value) – for
authorised records, IHLD or CHLD – for records in status “HOLD”, REVE – for
reversed records.

How (and when) this record got here? Let’s see fields inputter and
date.time. The former is user id (read – id of this user in application
USER), the latter – date and time of input. “1006240943” represents 09:43,
June 24, 2010. Fields from record.status to audit.date.time are called
“audit trail”.

24

7 FIN and CUS applications, history file, “F”

VOC entries, COMPANY, EVAL in LIST

T hese are applications that might have a separate set of files for each

company. Company in T24 context – large branch that has a separate set
of accounts, deals etc. FIN application (e.g. ACCOUNT) is always separate,
CUS application behaves the same way like CUSTOMER – if 2 branches have
common customer list, CUSTOMER and all CUS-type applications reside in
the same files for these branches. For branches with separate customer list
CUS-type applications are also in separate files.

How then file names are formed?

Let’s see companies list. Guess where? Correct, application COMPANY.

jsh mb10 ~-->LIST F.COMPANY MNEMONIC ←↩

@ID........ MNEMONIC

SG0010001 SG1

GB0010003 MF2

EU0010001 EU1

GB0010002 MF1

GB0010004 MF3

GB0010001 BNK

6 Records Listed

In general mnemonic in T24 is the thing that you can easily memorize
and use instead of id. In this particular case, mnemonic is also the thing
that is attached to file name prefix. E.g. for company GB0010001 “history”
file name for ACCOUNT application will be FBNK.ACCOUNT$HIS:

jsh mb10 ~-->LIST FBNK.ACCOUNT$HIS ←↩

25

Note that history records have a compound id which contains the se-
quential number:

LIST FBNK.ACCOUNT$HIS PAGE 1 12:24:05 13 OCT 2010

@ID................ 38288;10

@ID................ 38288;10

ACCOUNT.NUMBER..... 38288;10

CUSTOMER........... 1000006

CATEGORY........... 6001

PRODCAT............ 6001

ACCOUNT.TITLE.1.... ROBERT USD

ACCOUNT.TITLE.2....

SHORT.TITLE........ ROBERTUSD

MNEMONIC........... ROBERTUSD

POSITION.TYPE...... TR

CURRENCY........... USD

CURRENCY.MARKET.... 1

LIMIT.REF..........

ACCOUNT.OFFICER.... 2

OTHER.OFFICER......

POSTING.RESTRICT...

RECONCILE.ACCT.....

INTEREST.LIQU.ACCT.

INTEREST.COMP.ACCT.

INT.NO.BOOKING.....

REFERAL.CODE.......

Remember where we can see if particular application has a history file?

26

jsh mb10 ~-->LIST F.FILE.CONTROL ’ACCOUNT’ SUFFIXES ←↩

@ID..................................... SUFFIXES

ACCOUNT $HIS

$NAU

1 Records Listed

To see all history records for this particular account we can add selection
criteria to LIST or SELECT command. Let’s see only ids (note ONLY keyword:

jsh mb10 ~-->LIST FBNK.ACCOUNT$HIS LIKE "’38288’..."

ONLY ←↩

@ID................

38288;10

38288;5

38288;13

38288;4

38288;1

38288;2

38288;8

38288;3

38288;14

38288;9

38288;12

38288;6

38288;7

38288;11

14 Records Listed

Each of these files – “LIVE”, “NAU”, “HIS” – has “VOC entry”, i.e. a
corresponding record in VOC file. We already took a look into VOC (see ‘‘PA’’
VOC entry above). These entries are of type “F”:

27

jsh mb10 ~-->CT VOC FBNK.ACCOUNT$HIS F.ABBREVIATION ←↩

FBNK.ACCOUNT$HIS

001 F

002 ..\bnk.data\ac\FBNK ACCOUNT#HIS

003 ..\bnk.dict\F ACCOUNT]D

F.ABBREVIATION

001 F

002 ..\bnk.data\eb\F ABBREVIATION

003 ..\bnk.dict\F ABBREVIATION]D

Note that in field 2 there’s name of actual physical file which represents
the data portion of jBASE table and in field 3 there’s physical file which repre-
sents the dictionary portion. That’s how jBASE finds files that are not in the
directory (or directories) mentioned in environment variable JEDIFILEPATH.
Let’s see this variable:

jsh mb10 ~-->echo %JEDIFILEPATH% ←↩

c:\temenos\R10\mb10\bnk.run

Historically T24 files are addressed via VOC entries; they reside in multiple
subdirectories of c:\temenos\R10\mb10\bnk.data so JEDIFILEPATH has not
much use in T24.

In jBASE it’s also possible to address a file directly using its full path:

28

jsh mb10 ~-->LIST ..\bnk.data\ac\FBNK ACCOUNT#HIS ←↩

38288;10

17736;1

38008;17

38008;21

38288;5

38008;5

USD112100001;1

38296;9

37559;20

37947;4

37559;19

37559;25

37338;5

37947;7

38288;13

38008;12

USD180050001;1

37559;26

37947;2

37559;33

Why we see only ids? The answer is that jBASE in this case by default
looks into the same directory for a dictionary file with the name which is the
same as data file name plus suffix “]D”. And we don’t have such file there.
Now we add dictionary to our command:

29

LIST ..\bnk.data\ac\FBNK ACCOUNT#HIS USING DICT

..\bnk.dict\F ACCOUNT]D ←↩

@ID.................................. 38288;10

ACCOUNT.NUMBER....................... 38288;10

CUSTOMER............................. 1000006

CATEGORY............................. 6001

PRODCAT.............................. 6001

ACCOUNT.TITLE.1...................... ROBERT USD

ACCOUNT.TITLE.2......................

SHORT.TITLE.......................... ROBERTUSD

MNEMONIC............................. ROBERTUSD

POSITION.TYPE........................ TR

CURRENCY............................. USD

CURRENCY.MARKET...................... 1

LIMIT.REF............................

ACCOUNT.OFFICER...................... 2

OTHER.OFFICER........................

POSTING.RESTRICT.....................

RECONCILE.ACCT.......................

INTEREST.LIQU.ACCT...................

INTEREST.COMP.ACCT...................

INT.NO.BOOKING.......................

Now it’s time for “EVAL” keyword in LIST. With it we can output calcu-
lated things – and not only ones related to jBASE table. See how to output
only the sequential history number which is part of id:

30

jsh mb10 ~-->LIST FBNK.ACCOUNT$HIS EVAL

"FIELD(@ID,’;’,2)" ←↩

@ID................ FIELD(@ID,";",2)

38288;10 10

17736;1 1

38008;17 17

38008;21 21

38288;5 5

38008;5 5

USD112100001;1 1

38296;9 9

37559;20 20

37947;4 4

37559;19 19

37559;25 25

37338;5 5

37947;7 7

38288;13 13

38008;12 12

USD180050001;1 1

37559;26 26

37947;2 2

37559;33 33

Another trick – let’s use LIST command as a calculator. We use the table
with 1 record to keep the output tidy:

jsh mb10 ~-->LIST F.SPF EVAL "2*2" ←↩

@ID... 2*2.......

SYSTEM 4

1 Records Listed

We can also check some jBASE stuff:

31

jsh mb10 ~-->LIST F.SPF EVAL "OCONV(TIME(),’MT’)" ←↩

@ID... OCONV(TIME(),"MT")

SYSTEM 14:11

1 Records Listed

jsh mb10 ~-->LIST F.SPF EVAL "INDEX(’QWERTY’,’RTY’,1)"

←↩

@ID... INDEX(’QWERTY’,’RTY’,1)

SYSTEM 4

1 Records Listed

Ok, let’s move further...

8 SELECT and SELECT lists, COUNT, “SAV-

ING” and “UNIQUE” in SELECT

N ow we want not to display some records on the screen, but to select

them for further processing:

jsh mb10 ~-->SELECT FBNK.ACCOUNT$HIS LIKE "’38288’..."

←↩

14 Records selected

>SAVE.LIST MY.LIST ←↩

14 record(s) saved to list ’MY.LIST’

32

Where can we find this list? In the folder that is set in environment
variable JBCLISTFILE:

jsh mb10 ~-->echo %JBCLISTFILE% ←↩

c:\temenos\R10\mb10\bnk.run\&SAVEDLISTS&

jsh mb10 ~-->CT &SAVEDLISTS& MY.LIST ←↩

’MY.LIST’ record not found

Well... if record is not there it most probably means that the way the
environment variable was specified in remote.cmd is not much compatible
with Windows (I mean usage of ampersands). Is this list lost for us then?
Let’s see.

jsh mb10 ~-->GET.LIST MY.LIST ←↩
14 Records selected

>

Where it was stored then? Firstly input the command CLEARSELECT to
clear default SELECT list, otherwise our further commands will be affected
by it. Then:

33

jsh mb10 ~-->CT . MY.LIST ←↩

MY.LIST

001 38288;10

002 38288;5

003 38288;13

004 38288;4

005 38288;1

006 38288;2

007 38288;8

008 38288;3

009 38288;14

010 38288;9

011 38288;12

012 38288;6

013 38288;7

014 38288;11

So it was saved in current directory (c:\temenos\R10\mb10\bnk.run).
To keep it tidy let’s amend environment variable JBCLISTFILE to something
more compatible – e.g. SAVEDLISTS, create that directory in bnk.run and log
in once again. When we repeat previous SELECT and SAVE.LIST commands,
we see that there is the file MY.LIST stored in SAVEDLISTS subdirectory:

jsh mb10 ~-->cmd ←↩

c:\temenos\R10\mb10\bnk.run>dir SAVEDLISTS ←↩

15.07.2010 11:33 131 MY.LIST

c:\temenos\R10\mb10\bnk.run>

Let’s go back to the history file of application ACCOUNT. How many
records are there? Firstly we return to jsh prompt and then use COUNT

command:

34

c:\temenos\R10\mb10\bnk.run>exit ←↩

jsh mb10 ~-->COUNT FBNK.ACCOUNT$HIS ←↩

228 Records counted

As we saw earlier, there might be several records for the same account
reflecting all its history. But how can we see how many accounts at all have
history? It’s possible with SELECT command using UNIQUE clause. We’ll also
see that the result of SELECT not necessarily will be id but anything else as
well (see SAVING clause); we’ll also sort the records by id using SSELECT:

jsh mb10 ~-->SSELECT FBNK.ACCOUNT$HIS SAVING UNIQUE

EVAL "FIELD(@ID;’;’,1)" ←↩

63 Records selected

>SAVE.LIST AC.UNIQ ←↩

63 record(s) saved to list ’AC.UNIQ’

jsh mb10 ~-->CT SAVEDLISTS AC.UNIQ ←↩

AC.UNIQ

001 10596

002 10944

003 10979

004 11495

005 11525

...

060 USD180100001

061 USD180200001

062 USD180300001

063 USD195050001

You probably noticed that when we have an active SELECT list, the
jsh prompt changes to “>” sign. Knowing that you have an active SELECT

35

list is a good thing. Let’s try to use it to find out, for example, how many
accounts that are in history do not present in “LIVE” file (i.e. were reversed
or closed):

jsh mb10 ~-->GET.LIST AC.UNIQ ←↩

63 Records selected

>SELECT FBNK.ACCOUNT ←↩

** Error [202] **

Record ’37567’ is not on file.

** Error [202] **

Record ’45705’ is not on file.

61 Records selected

>

Now we know these 2 records.

9 More navigation in Classic

L et’s log in to T24 Classic (before that don’t forget to clear the active

SELECT list). We’ll take a look at ACCOUNT record – one of these 2
that don’t present in “LIVE” file. Type ACCOUNT S 37567 at AWAITING

APPLICATION prompt, then navigate down using F3 or Ctrl -F ←↩ ; either
you can go directly to the end of this record using F4 or Ctrl -E ←↩ :

36

R10 Model Bank ACCOUNT SEE

USD Savings Account

ACCOUNT.NUMBER.... 37567 ; 3 DAVEUSD1

--

94 CHARGE.MKT........ 1 Currency Market

95 INTEREST.CCY...... USD US Dollar

96 INTEREST.MKT...... 1 Currency Market

99. 1 ALT.ACCT.TYPE.. LEGACY

108 ALLOW.NETTING..... NO

142 SINGLE.LIMIT...... Y

163 CLOSED.ONLINE..... Y

167 DATE.LAST.UPDATE.. 09 DEC 2009

202 RECORD.STATUS..... CLOSED Account Closed

203 CURR.NO........... 3

204. 1 INPUTTER....... 2038 SEAT.AUTH

205. 1 DATE.TIME...... 06 FEB 10 20:48

206 AUTHORISER........ SY CLOSURE

207 CO.CODE........... GB-001-0001 R10 Model Bank

208 DEPT.CODE......... 1 Implementation

--

15 OCT 2010 09:30:20 USER (05 JAN) VLADIMIR.K [7323,INPAGE 3

ACTION

AWAITING PAGE INSTRUCTIONS

We see that record.status field value is CLOSED and id contains ’;’ –
this means that this record is no more in “LIVE” file.

If we knew page number we also could go directly here using command
“P3” at AWAITING PAGE INSTRUCTIONS prompt.

At this stage you’re probably tired of pressing key combinations like Ctrl

-F ←↩ . It’s time to map your keys – in case your terminal emulation program
allows it. So map:

Ctrl -U ←↩ to F1 – “Up”

Ctrl -B ←↩ to F2 – “Back”

37

Ctrl -F ←↩ to F3 – “Forward”

Ctrl -E ←↩ to F4 – “End”

Ctrl -V ←↩ to F5 – “Verify, i.e. commit”

Ctrl -W ←↩ to F6 – “double-V, so W – commit and move to next

record”

Ctrl -T ←↩ to F7 – “Text edit”

10 Introduction into programs and subrou-

tines, conclusion for applications

W hat actually happens when you type ACCOUNT at AWAITING APPLICATION

prompt? Logoff from T24. At jsh type:

jsh mb10 ~-->jshow -c ACCOUNT ←↩

Subroutine: c:\temenos\R10\mb10\bnk.run\t24lib
\acm accountopening\lib0.dll

jBC ACCOUNT version 10.0 Tue Feb 16 17:19:11 2010

jBC ACCOUNT source file source/R10.000/win32 TAFCR10.000

So when you type ACCOUNT at AWAITING APPLICATION prompt a subrou-
tine with the same name is launched. Actually almost all in T24 is subroutine.
To log in to T24 in Classic mode we type EX at jsh. “EX” is a program and
all that works further is a subroutine. See:

38

jsh mb10 ~-->jshow -c EX ←↩

Executable: c:\temenos\R10\mb10\bnk.run\t24bin\eb api

\EX.dll

jBC main() version 10.0 Tue Feb 16 18:33:05 2010

jBC main() source file source/R10.000/win32 TAFCR10.000

jsh mb10 ~-->jshow -c ABBREVIATION ←↩

Subroutine: c:\temenos\R10\mb10\bnk.run\t24lib
\eb systemtables\lib0.dll

jBC ABBREVIATION version 10.0 Wed Feb 17 09:36:01 2010

jBC ABBREVIATION source file source

/R10.000/win32 TAFCR10.000

So, to end up applications theme: we saw different parts of application
– data files, dictionary, subroutine with business logic, FILE.CONTROL
record. What else? See also corresponding records (i.e. with id = application
name) in PGM.FILE (field type) and STANDARD.SELECTION.

The main thing you need to understand: if business logic lies in applica-
tion subroutine (also called “template”), it’s not possible to update or create
a record in T24 application just editing it in front-end or issuing SQL-like
commands. Of course technically it’s possible but it will not create a correct
record with all necessary rules applied and other linked tables updated. You
might ask: how to do it then – only to input manually inside T24? The
answer is: OFS.

39

11 Introduction into OFS, more about func-

tions, setup OFS.SOURCE, tSS, simple

enquiry output

OFS stands for “Open financial service” though it’s not a service

– just a script language (though without programming capabilities) to ma-
nipulate records in T24 application. And it’s a must for a techie to know.
Manuals give quite comprehensive explanation of OFS syntax so I will not
go deeper into it here. Instead let’s try to use it to create or update T24
applications.

Firstly let’s create an appropriate record in OFS.SOURCE application.
Log in into T24 and type OFS.SOURCE, I TEST at AWAITING APPLICATION

prompt. “I” is the function used to input a record.

What I can say now about functions? In brief the rules are:

• Use function I in “pure” application or in regular VERSION to in-
put an unauthorised record (use F3 after I to have id assigned by T24
automatically).

• Use function I in “zero-authorisation” VERSION to input an autho-
rised record.

• Unauthorised record can be deleted (function D), authorised (func-
tion A) or (depending on application) put to “HOLD” (type IHLD to do it).

• Authorised record can (depending on application) be amended (again
function I; not all fields can be amended – there are so-called “NOCHANGE”
ones) – with or without further authorisation – or reversed (function R) –
again authorisation might or might not be required. Reversed records go
to “history” file – for those applications which support history (see above
FILE.CONTROL, field suffixes). To history file also go “LIVE” records
after each change (we saw it above with ACCOUNT) or after their retention
period expires (e.g. for FUNDS.TRANSFER it happens every day after close

40

of business – COB).

• Use function S to see a record. If you’re not going to edit a record,
better use this function intead of I to avoid locks but keep in mind that all
fields that are empty will not be shown.

• All records can be printed (function P) though it is mainly used for
output to flat file.

• Use function C to copy a record (wherever the application allows that).

• Authorised records can be listed using function L. “L L” is used to
search authorised file, “L -something” allows to jump to a record starting
with something, e.g. “EB.ERROR L -D” allows to list EB.ERROR records
starting from DC-999.NOT.ALLOWED.

• Unauthorised records can be listed using function E. “E E” is used
to search unauthorised file, “E -something” also works the same way as “L
-something”.

So – command is “OFS.SOURCE, I TEST”. Why the comma after appli-
cation name? Answer – to create the record in one step. VERSION (read –
input screen) name consists of name of application followed by comma and
a suffix. This suffix may be absent so we get just application name and
a comma. Don’t think that comma itself means zero-authorisation – it’s
an internal agreement that “comma-versions” are simple VERSION records
that are setup for zero authorisation with no additional features like selective
fields display, tabbed view and so on:

41

R10 Model Bank VERSION SEE

PGM.NAME.VERSION.. OFS.SOURCE,

--

2 RECORDS.PER.PAGE.. 1

3 FIELDS.PER.LINE... 1

46 NO.OF.AUTH........ 0

55. 1. 1 VAL.ASSOC... LOGIN.ID

55. 1. 2 VAL.ASSOC... EB.PHANT.ID

57 LOCAL.REF.FIELD... LOCAL.REF

65 REPORT.LOCKS...... YES

103 CURR.NO........... 1

104. 1 INPUTTER....... 6 WOODY-00 OFS BROWSERTC

105. 1 DATE.TIME...... 02 APR 10 17:40

106 AUTHORISER........ 6 WOODY-00 OFS BROWSERTC

107 CO.CODE........... GB-001-0001 R10 Model Bank

108 DEPT.CODE......... 4 Retail Banking User 4

--

15 OCT 2010 13:29:32 USER (05 JAN) VLADIMIR.K PAGE 1

ACTION

AWAITING PAGE INSTRUCTIONS

It’s a good idea never to amend any comma version and leave them for
the purpose they were designed for.

Under “appropriate” OFS.SOURCE record I mean the one with the fol-
lowing field values:

42

R10 Model Bank OFS SOURCE, INPUT

SOURCE.NAME....... TEST

--

1 DESCRIPTION....... TEST ONE

2 SOURCE.TYPE....... TELNET

3. 1 LOGIN.ID...... any

4. 1 EB.PHANT.ID...

5 MAX.CONNECTIONS...

6 RESTRICT.LINK.....

7 INITIAL.ROUTINE...

8 CLOSE.ROUTINE.....

9 IN.MSG.RTN........

10 OUT.MSG.RTN......

11 MSG.PRE.RTN......

12 MSG.POST.RTN.....

13 LOG.FILE.DIR.....

14 LOG.DETAIL.LEVEL. NONE

15 OFFLINE.QUEUE....

16 MAINT.MSG.DETS...

--

16 OCT 2010 09:12:16 USER (05 JAN) VLAD.K PAGE 1 >>>4>>>

ACTION

Note that field log.detail.level was automatically set to “NONE” –
this is business logic we were talking about earlier.

43

R10 Model Bank OFS SOURCE, INPUT

SOURCE.NAME....... TEST

--

17 DET.PREFIX........

18 IN.QUEUE.DIR......

19 IN.QUEUE.NAME.....

20 OUT.QUEUE.DIR.....

21 OUT.QUEUE.NAME....

22 QUEUE.INIT.RTN....

23 QUEUE.CLOSE.RTN...

24 SYNTAX.TYPE....... OFS

25. 1 LOCAL.REF.....

26 GENERIC.USER...... INPUTTER

27 IN.DIR.RTN........

28 VERSION...........

29 IB.USER.CHECK.....

30 EOD.VALIDATE......

31 FIELD.VAL.........

32. 1 ATTRIBUTES....

--

16 OCT 2010 09:12:16 USER (05 JAN) VLAD.K PAGE 2 >>>4>>>

ACTION

To jump to particular field just type its number. E.g. after typing “any”
on the first page you can go directy to the second one using F4 F3 and
then type 24 to jump directly to the field syntax.type. Note that you can’t
jump to so-called “NOINPUT” fields – try, for example, to type 25.1.

Having populated fields syntax.type and generic.user, use F5 to
commit the record.

This is the required minimum we can proceed with; we’ll add then some
additional features to see how they work.

Log out of T24 to jsh. Then launch the program that represents another
point of entry into T24 using our OFS.SOURCE record id as a parameter:

44

jsh mb10 ~-->tSS TEST ←↩

<tSS version="1.1"><t24version>R10.000</t24version>

<t24pid>556</t24pid><t24ofssource>TEST</t24ofssource>

<clientIP/></tSS>

Then type an OFS message. The simplest one looks like:

ENQUIRY.SELECT,,INPUTT/123456,%USER ←↩

,@ID::@ID/USER.NAME::USER.NAME/SIGN.ON.NAME

::SIGN.ON.NAME/LANGUAGE::LANGUAGE/DEPARTMENT.CODE

::DEPARTMENT.CODE,"ACCTEXEC " " Account Executive "

"ACCTEXEC1 " "1 " "1 ","ARCUSER " "TFOFFICER " "TFOFFICER

" "1 " "1 ","AUTHORISER " "AUTHORISER " "AUTHOR " "1 " "1

","BTOOLSUSER " "BUSINESS TOOLS USER " "BTOOLS " "1 " "1

","BU0

etc

This was output from so-called “percent enquiry”. These enquiries are
called whenever you use L function for an application. So it’s a good idea
never to amend such enquiries (exactly the same advice as for comma versions
– see above).

To exit from tSS type EXIT.

Note: though tSS is a part of older connectivity scheme used in R08 and
below, it’s still around and useful for such purposes as one described above.

45

12 OFS – inputting an application record:

VERSION creation, “VALIDATE” option,

couple of tests, STANDARD.SELECTION

check

L et’s start tSS again and try to input an application record. Let’s try to

create a FUNDS.TRANSFER record. Why FUNDS.TRANSFER? Because
it’s one of the main financial applications which is quite complex, has a lot of
dependencies; playing with simple things lke ABBREVIATION will be too
boring.

But firstly we need our own VERSION since using comma version wouldn’t
allow us to try many things that are worth trying. An appropriate name looks
like FUNDS.TRANSFER,TEST (remember rules for version names?) Let’s create
it (only necessary fields will be shown):

R10 Model Bank VERSION, INPUT

PGM.NAME.VERSION.. FUNDS.TRANSFER,TEST

--

2 RECORDS.PER.PAGE.. 1

3 FIELDS.PER.LINE... 1

...

46 NO.OF.AUTH....... 1

...

73 EXC.INC.RTN...... NO

--

“NO” in the last field allows us to have really “pure” application (other-
wise if there is any routine mentioned in VERSION.CONTROL>FUNDS.TRANSFER
record, it will be triggered while we experiment).

Note the method of specifying a record: APPLICATION>RECORD @ID.
We’ll use it later.

46

We’ll start form “VALIDATE” mode to gradually get the correct record
contents. Start tSS, type the following OFS message:

jsh mb10 ~-->tSS TEST ←↩

<tSS version="1.1"><t24version>R10.000</t24version>

<t24pid>556</t24pid><t24ofssource>TEST</t24ofssource>

<clientIP/></tSS>

FT,TEST/I/VALIDATE,INPUTT/123456, ←↩

FT10005CKNDK//-1/NO,TRANSACTION.TYPE:1:1=INPUT MISSING,

TRANSACTION.TYPE:1:1=INPUT MISSING

We haven’t supplied any values for any fields and now see that some fields
are mandatory. Note that we haven’t specified an id and it was assigned by
T24 automatically (FT10005CKNDK).

To correct this error let’s put some value to the field transaction.type:

FT,TEST/I/VALIDATE,INPUTT/123456,,TRANSACTION.TYPE::=1

FT10005NNVBH//-1/NO,TRANSACTION.TYPE:1:1=TOO FEW CHARACTERS

Too few... OK, make it long:

FT,TEST/I/VALIDATE,INPUTT/123456,,TRANSACTION.TYPE::=12345

FT1000588XQN//-1/NO,TRANSACTION.TYPE:1:1=TOO MANY CHARACTERS

Another example of business logic. How long this field actually should
be? Full answer could be found in the source code of this application template
in case we had it. Sometimes the answer to this question can be found in
application which was already mentioned – STANDARD.SELECTION.

Log in to T24, our command at AWAITING APPLICATION prompt is quite
short since it contains 2 abbreviations with a function between them:

47

SS S FT

Then navigate to the second page:

R10 Model Bank STANDARD SELECTION FIELDS SEE

FILE.NAME....... FUNDS.TRANSFER

--

11. 2 SYS.LANG.FIELD. N

12. 2 SYS.GENERATED. Y

1. 3 SYS.FIELD.NAME. TRANSACTION.TYPE

2. 3 SYS.TYPE....... D

3. 3. 1 SYS.FIELD.NO 1

4. 3. 1 SYS.VAL.PROG IN2A&&NOCHANGE

6. 3 SYS.DISPLAY.FMT 4L

7. 3 SYS.ALT.INDEX.. N

10. 3 SYS.SINGLE.MULT S

11. 3 SYS.LANG.FIELD. N

12. 3 SYS.GENERATED.. Y

14. 3. 1 SYS.REL.FILE FT.TXN.TYPE.CONDITION Defines

the default conditions f|

1. 4 SYS.FIELD.NAME. DEBIT.ACCT.NO

2. 4 SYS.TYPE....... D

3. 4. 1 SYS.FIELD.NO 2

4. 4. 1 SYS.VAL.PROG IN2.ALLACCVAL&&NOCHANGE

--

Fields from 1.3 to 14.3.1 are so-called “associated multi-value block”.
If you’re still not very comfortable with multi- and sub-values, we’ll later
have some examples. But for now all you need to know that these fields form
a group and we’re interested in three fields from this group.

• 1.3 – this is our FT field, transaction.type.

• 6.3 – it says that this field is displayed as 4 left-justified symbols.
It probably means that up to 4 characters can be input (I use “probably”
because it’s not stipulated here – it’s just formatting instruction.).

48

• 14.3.1 – it says that into this field can be input only a value that
presents as a record in application FT.TXN.TYPE.CONDITION.

A look into SS record for that application says us that sys.display.fmt
field for id has formatting instructions as 4R. So – 4 is most probably the
maximum size, what’s the minimum? We of course can experiment with that
(since 4 gives us not many iterations to try) but what if maximum length is,
say, 100? Next chapters will help us to do that.

13 Writing a simple T24 subroutine

W hy not program? Actually, in our case a subroutine is better than a

program because a subroutine can work indside T24 and therefore can have
access to T24 global variables pool.

First thing to do is to create a directory for our subroutines and programs.
The names of such directories are usually in uppercase and end with “.BP”.
That suffix is handy when you need to transfer the source code to another
environment (such names are allowed in DL.DEFINE application which is
used for this purpose).

A directory of course can be created with operation system command
“mkdir” but we’d better do it from jsh prompt. A hint: folders with files
are treated like tables with records in jBASE. So we can use jBASE command
CREATE-FILE. To skip creation of directory portion we use DATA clause, TYPE
clause makes it a directory. Other jBASE commands will work as well:

jsh mb10 ~-->CREATE-FILE DATA ETC.BP TYPE=UD ←↩

[417] File ETC.BP created , type = UD

jsh mb10 ~-->LIST ETC.BP ←↩

No Records Listed

49

This directory was created in our home directory bnk.run. To create
a subroutine we firstly need to invent a name for it. This name is to be
meaningful. Moreover, this name has to be unique to our T24 environment.
How do we know that? For example, we like the name “TEST.RTN”.

jsh mb10 ~-->jshow -c TEST.RTN ←↩

Subroutine: c:\temenos\R10\mb10\bnk.run\t24lib
\se test\lib2.dll

jBC TEST.RTN version 10.0 Tue Feb 16 20:00:48 2010

jBC TEST.RTN source file source/R10.000/win32 TAFCR10.000

No, it’s busy already. But what will happen if you occasionally choose
such a name? Let’s see. Edit the source file using JED editor (or notepad.exe)
to have there the following text:

SUBROUTINE TEST.RTN

$INSERT I COMMON

$INSERT I EQUATE

TEXT = ’THIS IS A TEST’

CALL REM

RETURN

END

We’ll discuss the contents later on. Note only that the name of subroutine
or program should be the same as source code file name (including case –
jBASE is case-sensitive though it’s not so evident under Windows). For
now – let’s compile it. The utility EB.COMPILE that was used in earlier T24
releases is no longer available so we simply use jBASE commands BASIC and
CATALOG. Note option -IGLOBUS.BP to let compiler know where to look for
I COMMON and I EQUATE – so-called “insert” files that are mandatory for all
subroutines that run under T24 (though can be omitted for very simple ones
that don’t use T24 global variables):

50

jsh mb10 ~-->BASIC -IGLOBUS.BP ETC.BP TEST.RTN ←↩
[jpp error 1] line 2:

I COMMON : File not located - suggest option -I

<pathname>

"TEST.RTN":

fatal pre-processor error - compilation abort

1 error was found

jbccom -f -d -aETC.BP -IGLOBUS.BP BASIC 1.b failed , command

returned a code of 1

jcompile: Returned an error code of 8

** Unable to compile source TEST.RTN **

Quite unexpectedly... Though you might find a new release lacking some-
thing you’re used to... In this case it’s VOC entry GLOBUS.BP:

jsh mb10 ~-->CT VOC GLOBUS.BP ←↩

’GLOBUS.BP’ record not found

Funny that there are still Universe object files in RG.BO.O subdirectory
of bnk.data/eb that nobody cares to remove but the vital things like that
are disappearing... not a big problem, let’s create it. In jsh type JED VOC

GLOBUS.BP, fill necessary fields, press Esc to get to command line, then type
FI to save the record:

NEW *File VOC , Record ’GLOBUS.BP’ Insert 13:06:10

Command-> FI

0001 F

0002 ../T24 BP

0003

----------------- End Of Record -----------------

Now we can compile and CATALOG this routine:

51

jsh mb10 ~-->BASIC -IGLOBUS.BP ETC.BP TEST.RTN ←↩

TEST.RTN

BASIC 1.c

Source file TEST.RTN compiled successfully

jsh mb10 ~-->CATALOG ETC.BP TEST.RTN ←↩

TEST.RTN Object TEST.RTN cataloged successfully

mt -nologo -manifest c:\temenos\R10\mb10\bnk.run\lib
\lib2.dll.manifest -outputresource:

c:\temenos\R10\mb10\bnk.run\lib\lib2.dll;2 failed , command

returned a code of -1

Library c:\temenos\R10\mb10\bnk.run\lib\lib2.dll rebuild

okay

Don’t pay attention to “failed” message. Check what we have now for
this routine:

jsh mb10 ~-->jshow -c TEST.RTN ←↩

Subroutine: c:\temenos\R10\mb10\bnk.run\lib\lib2.dll
jBC TEST.RTN version 10.0 Tue Oct 19 16:11:20 2010

jBC TEST.RTN source file ETC.BP

Subroutine (DUP!!): c:\temenos\R10\mb10\bnk.run\t24lib\
se test\lib2.dll

jBC TEST.RTN version 10.0 Tue Feb 16 20:00:48 2010

jBC TEST.RTN source file source

/R10.000/win32 TAFCR10.000

So now we have 2 routines with same name registered (or CATALOG’ued)
in the system. And whenever TEST.RTN is called, a local one will be loaded
rather than a core one – because environment variable is set accordingly:

52

jsh mb10 ~-->echo %JBCOBJECTLIST% ←↩

c:\temenos\R10\mb10\bnk.run\lib;
c:\temenos\R10\mb10\bnk.run\t24lib

A good idea is either to put t24lib first or to check all local routines if
such name was already registered. For this particular routine we’ll DECAT-
ALOG it, delete object file (one that starts from “$”) and rename to some
name that is not used (the latter will be done from jsh to illustrate more
jBASE commands):

jsh mb10 ~-->DECATALOG ETC.BP TEST.RTN ←↩

Object TEST.RTN decataloged successfully

...

jsh mb10 ~-->DELETE ETC.BP $TEST.RTN ←↩
1 record(s) deleted.

jsh mb10 ~-->jshow -c TEST2.RTN ←↩

jsh mb10 ~-->COPY FROM ETC.BP TEST.RTN,TEST2.RTN

1 records copied

jsh mb10 ~-->DELETE ETC.BP TEST.RTN ←↩
1 record(s) deleted.

Now let’s compile TEST2.RTN – use BASIC and CATALOG commands as
before, use jshow to check if this subroutine is properly registered. Don’t
forget to change SUBROUTINE TEST.RTN to SUBROUTINE TEST2.RTN in the
source code before compilation. To run this subroutine as a standalone one
inside T24 it’s necessary to create a record in application PGM.FILE:

53

R10 Model Bank PROGRAM FILE, INPUT

PROGRAM TEST2.RTN

--

1 TYPE.............. M

...

5 PRODUCT........... EB CORE

--

Type “M” means “mainline routine”. Though this concept is obsolete in
browser, you might need such type of routine to test some things (actually
we’re doing this right now).

Type TEST2.RTN at AWAITING APPLICATION prompt:

R10 Model Bank TEST2.RTN

--

--

19 OCT 2010 13:53:38 USER (05 JAN) VLADIMIR.K [8788,IN]

ACTION

CONTINUE (Y) THIS IS A TEST

54

Type Y to return to AWAITING APPLICATION prompt.

Looking into the source code of TEST2.RTN, it becomes evident that con-
tents of variable TEXT were output as a message by subroutine REM. Variable
TEXT is a global one, it is declared in I COMMON insert file. All is quite simple.
So far.

14 Getting application information from a rou-

tine

A mend the routine TEST2.RTN. Make it look like:

TEST2.RTN

001 SUBROUTINE TEST2.RTN

002 $INSERT I COMMON

003 $INSERT I EQUATE

004

005 V$FUNCTION = ’TEST’

006 CALL FT.TXN.TYPE.CONDITION

007

008 DEBUG

009

010 RETURN

011 END

Here the hint: we can call application template with function length
greater than 1 character and get its full structure. Main arrays that hold
this structure have names F – name, N – size and T – type. For id there
are respective variables ID.F, ID.N and ID.T (See I COMMON and I RULES in
../T24 BP for more information).

When we compile and run this subroutine, we can check these arrays
and variables in debugger. The one we need to see possible length of field

55

transaction.type in FT is ID.T:

ACTION DEBUG statement seen

0008 DEBUG

jBASE debugger->V ID.N

COMMON variables

ID.N : 4.2

It means that id of application FT.TXN.TYPE.CONDITION and there-
fore field transaction.type in FT can have length from 2 to 4... of what?

jBASE debugger->V ID.T

COMMON variables

ID.T : A

...from 2 to 4 alphanumeric characters. T24 manual ”In2 routines”
says: “IN2A: allows alphanumeric input. The character set is defined in
ASCII.VALUES and ASCII.VAL.TABLE”.

So far we’ll stop exploring this thing further. Type C to continue sub-
routine execution or Q to quit it. You can check 2 applications mentioned
in the manual by yourself; note only that “A” value in the variable ID.T

corresponds to “IN2A” routine; this is a rule that is true for all other types
of fields. Let’s return to creating FT record using OFS.

15 OFS – application record creation – con-

tinued, overrides, fields GTS.CONTROL

and NO.OF.AUTH

W e’ve stopped at the moment when we’ve tried to put a value to trans-

action.type field. We now know that we can put there only a value
that corresponds to id in application FT.TXN.TYPE.CONDITION. Let’s

56

choose a value. Log in to T24, type FT.TXN.TYPE.CONDITION L at AWAITING
APPLICATION prompt:

R10 Model Bank FT.TXN.TYPE.CONDITION - Default List

ID DESCRIPTION SHORT.DESCR TXN.CODE.FUNCT.

--

1 AC Account Transfer Accnt Transfer 213

2 ACCL AZ Loan Preclosure AZ LN Preclose 483

...

--

OK, AC looks as what we need. And we’ll need less fields to populate
than if we have chosen something else.

Some more navigation hint: to go into this record type 1 ←↩ , then
function (e.g. S) F5 :

57

R10 Model Bank FT.TRANSACTION.TYPE.CONDITION SEE

TRANSACTION.TYPE.. AC

--

1. 1 GB DESCRIPTION. Account Transfer

2. 1 GB SHORT.DESCR. Accnt Transfer

3 TXN.CODE.CR....... 213 Transfer

4 TXN.CODE.DR....... 213 Transfer

5 STO.TXN.CODE.CR... 214 Standing Order

6 STO.TXN.CODE.DR... 214 Standing Order

7 DR.CHARGE.TXN.CODE 234 Account Transfer Charges

8 DR.CHEQUE.TXN.CODE 201 Outward Cheque - Dr

11 FORW.VALUE.MAXIMUM +05W

12 BACK.VALUE.MAXIMUM -05W

13. 1 PAYMENT.TYPE... ALL

14. 1 PAYMENT.VALUE.. Y

15. 1 CUSTOMER.FLOAT. 0

16. 1 SAME.CUST.FLOAT 0

17 DR.ADVICE.REQD.Y.N N

18 CR.ADVICE.REQD.Y.N N

--

Back to OFS input. Type tSS TEST at jsh prompt. Then:

FT,TEST/I/VALIDATE,INPUTT/123456,,TRANSACTION.TYPE::=AC ←↩

FT10005H1YX7//-1/NO,CREDIT.AMOUNT:1:1=TRF AMOUNT MUST BE

INPUT IN #6 OR #14

After some time we finally get to more or less correct message which is:

58

FT,TEST/I/VALIDATE,INPUTT/123456,,TRANSACTION.TYPE::=AC,

CREDIT.AMOUNT::=100.00,CREDIT.CURRENCY::=EUR,

DEBIT.ACCT.NO::=14637,CREDIT.ACCT.NO::=10715 ←↩

FT10005QWCFC//1,TRANSACTION.TYPE:1:1=AC,

DEBIT.ACCT.NO:1:1=14637, CURRENCY.MKT.DR:1:1=1,

DEBIT.CURRENCY:1:1=EUR, DEBIT.VALUE.DATE:1:1=20100105,

CREDIT.ACCT.NO:1:1=10715, CURRENCY.MKT.CR:1:1=1,

CREDIT.CURRENCY:1:1=EUR, CREDIT.AMOUNT:1:1=100.00,

CREDIT.VALUE.DATE:1:1=20100105, PROCESSING.DATE:1:1=20100105,

CHARGE.COM.DISPLAY:1:1=NO, COMMISSION.CODE:1:1=DEBIT

PLUS CHARGES, CHARGE.CODE:1:1=DEBIT PLUS CHARGES,

PROFIT.CENTRE.CUST:1:1=100283,RETURN.TO.DEPT:1:1=NO,

FED.FUNDS:1:1=NO,POSITION.TYPE:1:1=TR,

AMOUNT.DEBITED:1:1=EUR100.00,AMOUNT.CREDITED:1:1=EUR100.00,

CREDIT.COMP.CODE:1:1=GB0010001,DEBIT.COMP.CODE:1:1=GB0010001,

LOC.AMT.DEBITED:1:1=145.00,LOC.AMT.CREDITED:1:1=145.00,

CUST.GROUP.LEVEL:1:1=99,DEBIT.CUSTOMER:1:1=100283,

CREDIT.CUSTOMER:1:1=100318, DR.ADVICE.REQD.Y.N:1:1=N,

CR.ADVICE.REQD.Y.N:1:1=N, CHARGED.CUSTOMER:1:1=100318,

TOT.REC.COMM:1:1=0, TOT.REC.COMM.LCL:1:1=0,TOT.REC.CHG:1:1=0,

TOT.REC.CHG.LCL:1:1=0, RATE.FIXING:1:1=NO,

TOT.REC.CHG.CRCCY:1:1=0, TOT.SND.CHG.CRCCY:1:1=0,

OVERRIDE:1:1=WITHDRAWL.LT.MIN.BAL}WITHDRAWL MAKES A/C BAL

LESS THAN MIN BAL, OVERRIDE:2:1=ACCT.UNAUTH.OD}Unauthorised
overdraft of & & on account&.{EUR}1607353.17}14637{EUR
{1607353.17{14637{100283{213{{

I said “more or less” because though all necessary fields are present, we
see here several so-called “overrides” (in red font). Let’s try to input this
record. To do that we replace “VALIDATE” option with “PROCESS” one:

59

FT,TEST/I/PROCESS,INPUTT/123456,,TRANSACTION.TYPE::=AC,

CREDIT.AMOUNT::=100.00,CREDIT.CURRENCY::=EUR,

DEBIT.ACCT.NO::=14637,CREDIT.ACCT.NO::=10715 ←↩

FT10005SVD9T//1,TRANSACTION.TYPE:1:1=AC,

DEBIT.ACCT.NO:1:1=14637, CURRENCY.MKT.DR:1:1=1,

DEBIT.CURRENCY:1:1=EUR, DEBIT.VALUE.DATE:1:1=...

Now we have the record FT10005SVD9T with status INAU. This status
was set because we had number of authorisations in our VERSION set to
1. We haven’t set gts.control field in our VERSION so by default the
record was accepted. Help for that field says: “Null: (Reject errors / Approve
overrides)”. This behaviour can be overridden by setting this field otherwise;
we also can override this value in OFS message itself (“2” in blue font means
the value of gts.control):

FT,TEST/I/PROCESS/2,INPUTT/123456,,TRANSACTION.TYPE::=AC,

CREDIT.AMOUNT::=100.00,CREDIT.CURRENCY::=EUR,

DEBIT.ACCT.NO::=14637,CREDIT.ACCT.NO::=10715

FT10005K4V1H//-2/NO,HOLD - OVERRIDE WITHDRAWL MAKES A/C BAL

LESS THAN MIN BAL

So the record FT10005K4V1H has status IHLD. But what if we’d like to
create the record in one step regardless of overrides? We can set the field
no.of.auth in VERSION>FUNDS.TRANSFER,TEST to 0 or set it in OFS
message:

FT,TEST/I/PROCESS/1/0,INPUTT/123456,,TRANSACTION.TYPE::=AC,

CREDIT.AMOUNT::=100.00,CREDIT.CURRENCY::=EUR,

DEBIT.ACCT.NO::=14637,CREDIT.ACCT.NO::=10715

FT100055LJR1//1,TRANSACTION.TYPE:1:1=AC...

...AUTHORISER:1:1=349 INPUTTER OFS TEST...

60

16 VERSION routines – AUT.NEW.CONTENT,

R.NEW, application insert file

T here are many types of routines (also called “hooks” that can be at-

tached to a VERSION to provide additional processing. Let’s try some of
them.

Create a routine in ETC.BP. Name can be ANC.TEST; the following con-
tents:

001 SUBROUTINE ANC.TEST

002 $INSERT I COMMON

003 $INSERT I EQUATE

004

005 DEBUG

006

007 RETURN

008 END

009

Compile it, then attach to user screen VERSION>FUNDS.TRANSFER,TEST
as aut.new.content. Main purpose of such routine – auto-population of
some fields in the record being input.

But before we can do that we have to create a record in PGM.FILE
application. Type of this record will be “S”:

61

R10 Model Bank PROGRAM FILE, INPUT

PROGRAM ANC.TEST

--

1 TYPE.............. S

2. 1 GB SCREEN.TITLE

3 ADDITIONAL.INFO...

4. 1 BATCH.JOB......

5 PRODUCT........... EB CORE

6 SUB.PRODUCT.......

7. 1 DESCRIPTION...

8. 1 APPL.FOR.SUBR. FUNDS.TRANSFER FUNDS.TRANSFER

9 ACTIVATION.FILE...

10 MT.KEY.COMPONENT.

11 MT.KEY.FILE......

12 REC.VERIFY.......

13 BYPASS.SEL.......

14 BULK.NO..........

15 JOB.RATING.......

16 RESERVED.9.......

--

Funny but for aut.new.content routines you have to create PGM.FILE
records, for all other “VERSION” routines it’s necessary to create a record
in application EB.API. We’ll see it a bit later.

Let’s attach the routine. We can attach it to any field – we can amend
any other field anyway (within reason of course):

62

R10 Model Bank VERSION, INPUT

PGM.NAME.VERSION.. FUNDS.TRANSFER,TEST

--

49. 1 REKEY.FIELD.NO.

50. 1 AUTOM.FIELD.NO. TRANSACTION.TYPE

51. 1 AUT.OLD.CONTENT

52. 1 AUT.NEW.CONTENT @ANC.TEST

...

--

This is another example of “multi-value block”. Imagine that we want
to add another aut.new.content routine. To expand this block of fields
position the cursor at the field 50.1 and type < (less than) ←↩ . See the
result:

R10 Model Bank VERSION, INPUT

PGM.NAME.VERSION.. FUNDS.TRANSFER,TEST

--

49. 1 REKEY.FIELD.NO.

50. 1 AUTOM.FIELD.NO.

51. 1 AUT.OLD.CONTENT

52. 1 AUT.NEW.CONTENT

50. 2 AUTOM.FIELD.NO. TRANSACTION.TYPE

51. 2 AUT.OLD.CONTENT

52. 2 AUT.NEW.CONTENT @ANC.TEST

...

--

To remove this block, position the cursor to any of its fields and type -

(hyphen) ←↩

Again we are in FT record creation via OFS. Since we put DEBUG state-
ment into ANC.TEST routine, the processing stops. To populate a field in new
record from our routine we need to update global array R.NEW. But let’s see
it first in debugger (set up your terminal to show at least 600 last lines since
R.NEW has 500 items in it). Input the following OFS message in tSS:

63

FT,TEST/I/PROCESS,INPUTT/123456,,TRANSACTION.TYPE::=AC,

CREDIT.AMOUNT::=100.00,CREDIT.CURRENCY::=EUR,

DEBIT.ACCT.NO::=14637,CREDIT.ACCT.NO::=10715 ←↩
DEBUG statement seen

Source changed to c:\temenos\R10\mb10\bnk.run\ETC.BP\ANC.TEST
0005 DEBUG

jBASE debugger->V R.NEW ←↩

COMMON variables

R.NEW(0) :

R.NEW(1) : AC

R.NEW(2) : 14637

R.NEW(3) :

R.NEW(4) :

R.NEW(5) :

R.NEW(6) :

R.NEW(7) :

R.NEW(8) :

R.NEW(9) :

R.NEW(10) :

R.NEW(11) : 10715

R.NEW(12) :

R.NEW(13) : EUR

R.NEW(14) : 100.00

R.NEW(15) :

...

So if we want to assign something to FT field 9 (debit.their.ref) we
have to assign a value to R.NEW(9). But before we do that – think: what
if field numbers will change in later releases of T24? Will we have to go
through all local code (and our routine belongs to local code – i.e. all code
that is written outside the core) to see if field numbers are still in sync?

The answer is: no. To make things compatible with future releases we’ll
use another “insert“ file – this time it’s one where all fields of our application
are defined. The name of such file consists of “I F.” plus application name:

64

001 SUBROUTINE ANC.TEST

002 $INSERT I COMMON

003 $INSERT I EQUATE

004 $INSERT I F.FUNDS.TRANSFER

005

006 DEBUG

007

008 R.NEW(FT.DEBIT.THEIR.REF) = ’OUR REFERENCE’

009

010 RETURN

011 END

012

In I F.FUNDS.TRANSFER ft.debit.their.ref is defined as 9. This al-
lows us to move to a new release with only recompiling all local source. Now
compile the source and launch tSS again. At debugger prompt type W to
see where we are. If the source that you see is an older one – type P ETC.BP

and then again W:

65

FT,TEST/I/PROCESS,INPUTT/123456,,TRANSACTION.TYPE::=AC,

CREDIT.AMOUNT::=100.00,CREDIT.CURRENCY::=EUR,

DEBIT.ACCT.NO::=14637,CREDIT.ACCT.NO::=10715 ←↩

DEBUG statement seen

Source changed to c:\temenos\R10\mb10\bnk.run\ETC.BP\ANC.TEST
0005 DEBUG

jBASE debugger->W ←↩

0002 $INSERT I COMMON

0003 $INSERT I EQUATE

0004

0005 DEBUG

0006

0007 RETURN

0008 END

0009

jBASE debugger->P ETC.BP ←↩

Source path: ETC.BP

jBASE debugger->W ←↩

0002 $INSERT I COMMON

0003 $INSERT I EQUATE

0004 $INSERT I F.FUNDS.TRANSFER

0005

0006 DEBUG

0007

0008 R.NEW(FT.DEBIT.THEIR.REF) = ’OUR REFERENCE’

0009

0010 RETURN

Type S ←↩ 2 times to proceed with 2 program steps. Then see what’s
there in R.NEW(9):

jBASE debugger->V R.NEW(9) ←↩

COMMON variables

R.NEW(9) : OUR REFERENCE

66

Then – let it continue (C ←↩) and see the result:

FT10005Z96PZ//1,TRANSACTION.TYPE:1:1=AC...

DEBIT.THEIR.REF:1:1=OUR REFERENCE,...

17 OFS.REQUEST.DETAIL

T o log all OFS activities we can use application OFS.REQUEST.DETAIL.

All setup that is necessary is to populate 2 additional fields in our OFS.SOURCE
record:

R10 Model Bank OFS SOURCE, INPUT

SOURCE.NAME....... TEST

--

...

16 MAINT.MSG.DETS.... Y

17 DET.PREFIX........ TEST

--

Now feed OFS string to tSS again and see the protocol:

jsh mb10 ~-->LIST F.OFS.REQUEST.DETAIL LIKE TEST... ←↩

@ID............. TEST100050550329057.01

@ID............. TEST100050550329057.01

MESSAGE.KEY..... TEST100050550329057.01

APPLICATION..... FT

VERSION......... TEST

FUNCTION........ I

TRANS.REFERENCE. FT100054MYD8

...

67

USER.NAME....... INPUTT

COMPANY......... GB0010001

DATE.TIME.RECD.. 08:04:17:260 22 OCT 2010

DATE.TIME.QUEUE.

DATE.TIME.PROC.. 08:04:23:541 22 OCT 2010

STATUS.......... PROCESSED

MSG.IN.......... FT,TEST/I/PROCESS,INPUTT/******,,

TRANSACTION.TYPE::=AC,CREDIT.AMOUNT::=100.00,

CREDIT.CURRENCY::=EUR,DEBIT.ACCT.NO::=14637,

CREDIT.ACCT.NO::=10715

MSG.OUT......... FT100054MYD8/TEST100050550329057.01/1,

TRANSACTION.TYPE:1:1=AC,DEBIT.ACCT.NO:1:1=14637,

CURRENCY.MKT.DR:1:1=1,DEBIT.CURRENCY:1:1=EUR,

DEBIT.VALUE.DATE:1:1=20100105,

DEBIT.THEIR.REF:1:1=OUR REFERENCE,

CREDIT.ACCT.NO:1:1=10715,CURRENCY.MKT.CR:1:1=1,

CREDIT.CURRENCY:1:1=EUR,CREDIT.AMOUNT:1:1=100.00,

CREDIT.VALUE.DATE:1:1=20100105,

PROCESSING.DATE:1:1=20100105,

CHARGE.COM.DISPLAY:1:1=NO,

...

OVERRIDE:1:1=WITHDRAWL.LT.MIN.BAL}WITHDRAWL MAKES

A/C BAL LESS THAN MIN BAL,OVERRIDE:2:1=

ACCT.UNAUTH.OD}Unauthorised overdraft of & &

on account&.{EUR}1607753.17}14637{EUR{1607753.17
{14637{100283{213{{,RECORD.STATUS:1:1=INAU,
CURR.NO:1:1=1,INPUTTER:1:1=5503 INPUTTER OFS TEST,

DATE.TIME:1:1=1007220804,CO.CODE:1:1=GB0010001,

DEPT.CODE:1:1=1

ACTION..........

GTS.CONTROL.....

NO.OF.AUTH......

68

18 Manual transaction input in comparison

with OFS, GTSACTIVE variable

L et’s try to input FT record manually using the same VERSION. But

before that comment the DEBUG statement in routine ANC.TEST (don’t forget
to recompile routine after that):

001 SUBROUTINE ANC.TEST

002 $INSERT I COMMON

003 $INSERT I EQUATE

004 $INSERT I F.FUNDS.TRANSFER

005

006 *DEBUG

007

008 R.NEW(FT.DEBIT.THEIR.REF) = ’OUR REFERENCE’

009

010 RETURN

011 END

012

Now log in to T24, type FT,TEST I F3 at AWAITING APPLICATION prompt
– yes, “F3” at command end is another way to get id automatically:

69

R10 Model Bank FUNDS.TRANSFER,TEST INPUT REF FT10005000F3

--

1 TRANSACTION.TYPE..

2 DEBIT.ACCT.NO.....

3 IN.DEBIT.ACCT.NO..

4 CURRENCY.MKT.DR... 1 Currency Market

5 DEBIT.CURRENCY....

6 DEBIT.AMOUNT......

7 DEBIT.VALUE.DATE..

8 IN.DEBIT.VDATE....

9 DEBIT.THEIR.REF... OUR REFERENCE

10 CREDIT.THEIR.REF..

11 CREDIT.ACCT.NO....

12 CURRENCY.MKT.CR... 1 Currency Market

13 CREDIT.CURRENCY...

14 CREDIT.AMOUNT.....

15 CREDIT.VALUE.DATE.

16 TREASURY.RATE.....

--

What we can see here?

• There are core defaults visible (fields 4 and 12) – again business logic.

• Our local default in field 9 is here so OFS processing is basically the
same as manual input.

How our routine knows if we’re using OFS or manual input? We can
analyse core variable GTSACTIVE that is set in I GTS.COMMON:

70

001 SUBROUTINE ANC.TEST

002 $INSERT I COMMON

003 $INSERT I EQUATE

004 $INSERT I F.FUNDS.TRANSFER

005 $INSERT I GTS.COMMON

006

007 *DEBUG

008

009 R.NEW(FT.DEBIT.THEIR.REF) = ’OUR REFERENCE’

010

011 IF GTSACTIVE THEN

012 R.NEW(FT.CREDIT.THEIR.REF) = ’OFS INPUT’

013 END ELSE

014 R.NEW(FT.CREDIT.THEIR.REF) = ’MANUAL INPUT’

015 END

016

017 RETURN

018 END

019

Compile, input 2 transactions – manually and using OFS, check results:

R10 Model Bank FUNDS.TRANSFER,TEST INPUT FT10005MFRL3

--

...

9 DEBIT.THEIR.REF.. OUR REFERENCE

10 CREDIT.THEIR.REF. MANUAL INPUT

...

--

71

jsh mb10 ~-->LIST FBNK.FUNDS.TRANSFER$NAU

’FT100059MKYC’ CREDIT.THEIR.REF ←↩

@ID...................... CREDIT.THEIR.REF...........

FT100059MKYC OFS INPUT

1 Records Listed

Why id is right-justified in the output and credit.their.ref is left-
justified? The answer is in dictionary:

jsh mb10 ~-->CT DICT FBNK.FUNDS.TRANSFER$NAU @ID

CREDIT.THEIR.REF ←↩

@ID

001 D

002 0

003

004 @ID

005 25R

006 S

CREDIT.THEIR.REF

001 D

002 10

003

004 CREDIT.THEIR.REF

005 27L

006 S

007

...

And dictionary is built on the base of STANDARD.SELECTION record
which we’ve examined earlier. The problem for a person who is familiar
with MV (multivalue) world but is new to T24 is that normally you can add
your dictionary entries (e.g. I-descriptors; see later what’s that) manually

72

to dictionary file. In T24 you add such things to STANDARD.SELECTION
record and then – upon its authorisation (depending of your changes or if
the field rebuild.sys.fields is set to Y) – dictionary is rebuilt (erasing all
things added manually). Remember about that.

19 Browser client – jboss, jBASE agent, log-

ging in

P robably it’s time to start using this beast. To access T24 via browser

you’ll need (except browser itself – IE or Firefox) to start jboss application
server and so-called “jBASE agent”. I’ve written at the very start of this
book that in your R10 package you probably already have a directory called
something like BATfiles. Though you might not.

If you got jboss not from Temenos but simply downloaded it from the
Internet then you’ll need to put there so-called “TOCF-EE” package. I’d
rather restrain from more explanations – things change all the time and you
better see the latest setup document provided by Temenos.

Then see file t24-ds.xml in jboss deploy directory which in our case
is: c:\temenos\R10\jboss\server\default\deploy (yes we again can use
CT or JED to see or edit it; rule is the same – directory is a “table”, file is
a “record”):

73

jsh mb10 ~-->CT
c:\temenos\R10\jboss\server\default\deploy t24-ds.xml

←↩

...

038 <jndi-name>jca/t24ConnectionFactoryR10</jndi-name>

...

043 <config-property name="host"

type="java.lang.String">127.0.0.1</config-property>

044 <config-property name="port"

type="int">20001</config-property>

045

046 <config-property name="allowInput"

type="java.lang.Boolean">true</config-property>

047 <config-property name="env" type="java.lang.String">

OFS SOURCE=BROWSERTC</config-property>

OK, here we are. To connect to T24 we’ll need to start both jboss

and jBASE agent with the latter running on a local host using port 20001.
Agent will use OFS.SOURCE record BROWSERTC to connect to T24; while
“allowInput” = “true” will let us debug our routines if needs be.

But let’s first see if that OFS.SOURCE record is OK. It has to have type
“SESSION” and syntax type “OFS”:

jsh mb10 ~-->LIST F.OFS.SOURCE ’BROWSERTC’ SOURCE.TYPE

SYNTAX.TYPE ←↩

@ID................. SOURCE.TYPE SYNTAX.TYPE

BROWSERTC SESSION OFS

1 Records Listed

Type “SESSION” also allows us to connect to it using tSS:

74

jsh mb10 ~-->tSS BROWSERTC ←↩
<tSS version="1.1"><t24version>R10.000</t24version><t24pid>

2404</t24pid><t24ofssource>BROWSERTC</t24ofssource>

<clientIP/></tSS>

ENQUIRY.SELECT,,INPUTT/123456,%SPF

,@ID::No of /RUN.DATE::Run date/SITE.NAME::Site

name/OP.MODE::Op mode/OP.CONSOLE::Op console,"SYSTEM" "20

JAN 2010" "R10 Model Bank " " O" " "

For the second time we use SPF application without yet knowing what
it is. Answer – this is the main T24 setup table. And there is always only
one record (SYSTEM) so we could use it in “EVAL” exercise described above.

Now start jBASE agent using a bat file you already have (or you can use
remote.cmd, copy it to agent.cmd and amend the last line):

rem jprofile.bat

%JBCRELEASEDIR%\bin\jsh - -c "jbase agent -p 20001"

Note port number (20001) that was set up in t24-ds.xml. Start agent.
Then start jboss (actually the order doesn’t matter). The following batch
file will do:

set JAVA HOME=c:\temenos\jdk1.6.0 17

cd c:\temenos\R10\jboss\bin
run.bat -b 0.0.0.0

Now go to browser and try to connect to:

http://localhost:9095/BrowserWeb

I usually rename BrowserWeb.war file (it can either come as a directory
with the same name) in jboss deploy directory to something more relevant
(e.g. mb10.war) so the following screen will have different URL (note that

75

“/servlet/BrowserServlet” at the end is added automatically so you needn’t
type it):

Input your user name and password... we’re there!

76

We have several jBASE sessions started now. See WHERE command out-
put:

jsh mb10 ~-->WHERE ←↩

Port Device Account PID Command

*1 VT220 telnet 2404

c:\temenos\R10\TAFC\bin\jsh -

WHERE

2 ntcon vkazimirtchi 2872

c:\temenos\R10\TAFC\bin\jsh - -c jbase agent -p 20001

4 ntcon vkazimirtchi 2768 jbase agent

Here we see jBASE agent on the port 20001 and another agent instance
that was forked when we logged in using browser.

77

20 Transaction input under Browser, debug-

ging

L et’s use our VERSION to input a new FT record. Input a command

FT,TEST at browser client command line.

To input a new record click to the icon which is located to the left of
“R10 Model Bank” words.

78

What we can see here?

• aut.new.content routine defaulted the field debit.their.ref the
same way as it did before.

• Routine thinks it’s an OFS input.

Actually, browser client interacts with T24 via OFS (using OFS.SOURCE
record BROWSERTC, as we saw above). To make our routine more intelligent
we amend it the following way:

79

001 SUBROUTINE ANC.TEST

002 $INSERT I COMMON

003 $INSERT I EQUATE

004 $INSERT I F.FUNDS.TRANSFER

005 $INSERT I GTS.COMMON

006 $INSERT I F.OFS.SOURCE

007

008 *DEBUG

009

010 R.NEW(FT.DEBIT.THEIR.REF) = ’OUR REFERENCE’

011

012 IF GTSACTIVE THEN

013 IF OFS$SOURCE.REC<OFS.SRC.SOURCE.TYPE> EQ ’SESSION’

THEN

014 R.NEW(FT.CREDIT.THEIR.REF) = ’INPUT VIA BROWSER’

015 END ELSE

016 R.NEW(FT.CREDIT.THEIR.REF) = ’OFS INPUT’

017 END

018 END ELSE

019 R.NEW(FT.CREDIT.THEIR.REF) = ’INPUT VIA TERMINAL’

020 END

021

022 RETURN

023 END

024

You see that we don’t read a record from application OFS.SOURCE. We
already have it read and put into global variable OFS$SOURCE.REC. Use this
technique wherever possible to reduce I/O.

After compilation of amended routine it might happen that system be-
haviour hasn’t changed. It’s because the executable code is cached, so log
out and log in again. Sometimes you’ll have even to restart jBASE agent
to see the changes since a forked process (which we saw earlier using WHERE

command) is reused (so we’ll use one that has old program in cache). In case
of restarting the agent it’s not necessary to log in again.

See the changed logic in action:

80

To debug a routine simply put DEBUG statement into it (we can uncom-
ment the one we had commented earlier). When it’s being reached you’ll see
debugger screen in jboss window:

81

16:27:04,806 INFO [STDOUT] (OFS.INITIALISE.SOURCE) :

BROWSERTC

16:27:05,181 INFO [STDOUT] Total processing time from start

to end of OFS.SESSION.MANAGER *** Time = 359.36108397

16:27:05,338 WARN [Parameters] Parameters: Invalid chunk

ignored.

16:27:05,353 WARN [Parameters] Parameters: Invalid chunk

ignored.

16:27:06,338 INFO [STDOUT] (OFS.INITIALISE.SOURCE) :

BROWSERTC

16:27:06,400 INFO [STDOUT] Total processing time from start

to end of OFS.SESSION.MANAGER *** Time = 46.8730468696064

16:27:07,994 INFO [STDOUT] Total processing time from start

to end of OFS.SESSION.MANAGER *** Time = 2593.65039063

16:27:25,915 INFO [STDOUT] Total processing time from start

to end of OFS.SESSION.MANAGER *** Time = 234.3659668

16:27:28,196 INFO [STDOUT] DEBUG statement seen

16:27:28,196 INFO [STDOUT] Source changed to

c:\temenos\R10\mb10\bnk.run\ETC.BP\ANC.TEST
16:27:28,196 INFO [STDOUT] 0008

16:27:28,196 INFO [STDOUT] DEBUG

16:27:28,196 INFO [STDOUT] jBASE debugger->

After you finish your debugging and use its “C” command to continue
execution, the application screen will appear (provided that you haven’t ex-
ceeded timeouts which in this case probably are to be increased).

21 TODAY variable, date format in T24, edit

mode in Classic, API for dates manipula-

tion

L et’s expand a little the functionality of our aut.new.content routine.

There is a field debit.value.date that we’d like to auto-populate with
current bank date. How to do that? System date will not do because the

82

date of current bank day might be different.

Answer: there is a variable called TODAY in I COMMON insert file. So we
can include the following piece of code to our routine:

021

022 R.NEW(FT.DEBIT.VALUE.DATE) = TODAY

023

Let’s go back to terminal client (the code works the same way – you saw
it; we’ll use Browser client only for Browser-specific issues). Input the deal
manually:

R10 Model Bank FUNDS.TRANSFER,TEST INPUT REF FT10005C7B0K

--

1 TRANSACTION.TYPE..

2 DEBIT.ACCT.NO.....

3 IN.DEBIT.ACCT.NO..

4 CURRENCY.MKT.DR... 1 Currency Market

5 DEBIT.CURRENCY....

6 DEBIT.AMOUNT......

7 DEBIT.VALUE.DATE.. 05 JAN 2010

8 IN.DEBIT.VDATE....

9 DEBIT.THEIR.REF... OUR REFERENCE

10 CREDIT.THEIR.REF.. INPUT VIA TERMINAL

11 CREDIT.ACCT.NO....

12 CURRENCY.MKT.CR.. 1 Currency Market

13 CREDIT.CURRENCY...

14 CREDIT.AMOUNT.....

15 CREDIT.VALUE.DATE.

16 TREASURY.RATE.....

--

Is today’s date stored as “05 JAN 2010” ? We could use debugger to see
it but the other way is: go to the field DEBIT.VALUE.DATE using F3 several
times and – when you’re on that field – press F7 (or Ctrl T ←↩ if your keys

83

are still not mapped):

7 DEBIT.VALUE.DATE.. 20100105 |

Here we are at “Edit” mode which represents the true format of data.
“05 JAN 2010” is its external representation. In this mode functional keys
also work:

• F1 – exit.

• F2 – move one character backward.

• F3 – move one character forward.

• F4 – move to the end.

• F5 – delete a character.

• F6 – toggle insert/overwrite mode.

• F7 – commit changes and exit.

What if we wanted to put to our field not the current bank day but the
next one? Firstly, it’s evident that we can’t add 1 to the value of TODAY,
otherwise we might end up with, say, 32nd of July (I swear I saw that in
local developments). Secondly, we need to know if tomorrow is a work day
or either a weekend or a holiday.

Public API subroutine CDT (which is described in “Subroutine Guide.pdf”)
can be used to calculate the necessary date for us:

84

021

022 V.DATE = TODAY

023 CALL CDT(’’, V.DATE, ’+1W’)

024

025 R.NEW(FT.DEBIT.VALUE.DATE) = V.DATE

026

Where “+1W” means “forward 1 working day”. For more options see the
manual mentioned above; answer for the evident question “where weekends
and holidays are stored” is “application HOLIDAY”.

But why didn’t we call CDT with TODAY as a parameter? Because the
second parameter for CDT is both an input and output one. It changes after
that call. So TODAY would be changed as well resulting in total mess in
everything that this particular session might have done after that. Even
after logging out since global variables are preserved until the session is over.

After you’ve checked the changes and have seen “06 JAN 2010” in the
field debit.value.date of a new deal let’s see how global variables do be-
have.

22 Global variables again – their lifetime, writ-

ing a PROGRAM, CRT

N ow let’s write a program (since we’re going to run it from jsh). The

code is very simple:

85

001 PROGRAM PROG.TEST

002 $INSERT I COMMON

003 $INSERT I EQUATE

004

005 CRT TODAY

006

007 STOP

008 END

009

(Note “STOP” instead of “RETURN”.)

Of course before writing it check if its name is available (jshow -c).
Compile it (again ignore “failed” messages, the one to look at is: “Object
PROG.TEST cataloged successfully”; but if you have any doubts – run jshow

again – and ignore “DUP” warning).

During the compilation beware of messages like:

Warning: Variable TODAY is never assigned!

In our case this could happen if we’d forgotten to include I COMMON in
our source. In that case variable TODAY would be addressed without being
assigned. Such errors are also quite common when you get a typo in variable
name.

OK, open a fresh telnet session and at jsh type PROG.TEST ←↩ . Then
log in to T24, log out and run PROG.TEST again. See the difference?

On the first run TODAY variable is not initialised so the output is “0”.
On the second it is so the output is “20100105”. And sometimes it hurts...
Don’t be surprised if you test some OFS with tSS, then try to log in to T24
and see the system in an infinite loop... In this case press Ctrl C and – when
you’re at debugger prompt – quit it, then close the session.

About “CRT” – you’ll never see its output under Browser, so you might
be surprised how many unexpected screen output happens in T24 running

86

in Classic mode. Sometimes it helps to find the reason of an error that you
were desperately seeking under Browser.

23 CHECK.REC.RTN – error raising, other

VERSION routines – notes

I t’s always a good idea to use a hook routine for the purpose for which

it was designed. For example, to stop the processing before a record can be
accessed (or a user can see a record) it’s no use to try to raise an error in
an aut.new.content routine – for this purpose it’s better to use routine
of type check.rec.rtn. Let’s see an example of a routine that forbids the
user to enter FT record that wasn’t input by this user. Here we’ll start to
comment our code – the purpose of the routine in the header and also some
comments in the code:

001 SUBROUTINE CHKREC.TEST

002 *--

003 * This routine allows either to input a new record

004 * or enter a record which belongs to the same user.

005 * Type of routine: CHECK.REC.ROUTINE.

006 *--

007 $INSERT I COMMON

008 $INSERT I EQUATE

009 $INSERT I F.FUNDS.TRANSFER

010

011 V.INPT = R.NEW(FT.INPUTTER)

012 IF V.INPT EQ ’’ THEN RETURN ;* new record

013

014 IF FIELD(V.INPT, ’ ’, 2) NE OPERATOR THEN

015 E = ’OPERATOR NOT THE SAME’

016 END

017

018 RETURN

019 END

020

87

Before we can attach this routine to our VERSION, we have to create
EB.API record for it:

R10 Model Bank EB.API, INPUT

KEY............... CHKREC.TEST

--

1 DESCRIPTION.......

2 PROTECTION.LEVEL.. FULL

3 SOURCE.TYPE....... BASIC

4 JAVA.METHOD.......

5 JAVA.CLASS........

6 JAVA.PA

7 RESERVED27........

8 RESERVED26........

9 RESERVED25........

10 RESERVED24........

11 RESERVED23........

12 RESERVED22........

13 RESERVED21........

14 RESERVED20........

15 RESERVED19........

16 RESERVED18........

--

Then attach our routine to our VERSION (field check.rec.rtn; it’s
a multivalue field so we can have several such routines if needs be). Run
FT,TEST at AWAITING APPLICATION prompt and try to:

• Input a new record.

• Enter a record that you’ve created before (for authorised records you
can only use function S).

• Enter a record that somebody else created.

It’s not that I recommend to use such technique for access control; there’s
whole T24 module called SMS available for that purpose. Most such things
can be achieved without programming, though it’s still required in some

88

cases.

It’s time to mention that not all routines are triggered in a particu-
lar situation. For example, S function doesn’t trigger aut.new.content
routines. (Actually, it doesn’t make sense to auto-populate a record that
you’re opening in “See” mode.) validation.rtn is triggered twice – when
user inputs a value into a field (that field is to be assigned as “HOT.FIELD” or
“HOT.VALIDATE” for it to work in Browser) and before system cross-validation
at commit time.

Also keep in mind that to raise an error you’ll have to apply different
methods. We saw how to raise an error in check.rec.rtn; to do it in a
“validation” routine you need to assign global variable ETEXT. In “input”
routine the following code is necessary:

AF = FT.DEBIT.THEIR.REF ;* number of field where this error

;* will appear

ETEXT = ’THIS IS THE ERROR’

CALL STORE.END.ERROR

You can find more about VERSION routines in helptext (unfortunately,
T24 manuals still describe only 4 earliest types of them – aut.new.content,
validation.rtn, input.routine and auth.routine. The only thing that
is left to say here about validation.rtn is that it’s not recommended nowa-
days since when it’s triggered after field input, under Browser the whole
record is to be tranferred to the server and it’s considered not so good for
overall system performance.

24 Programming language overview, writing

a simple game

A s we saw, there is a programming language that is supplied with jBASE.

This language was earlier called “jBASE Basic” but then was renamed to

89

“jBC” (possibly from marketing point of view). But I still call it “Basic”.

It looks quite simple and readable and here is the dangerous part. Typical
boss usually thinks that it’s sufficient to hire anyone with Basic knowledge
and that’s it. Don’t think that it’s simple to program for T24. The truth is
that T24 local developer (or supporter) uses only tiny part of the language
and the most steep part of learning curve is to understand API, core global
variables, hook types and many other things. Real knowledge starts to come
only after about 6 months of real work.

What T24 local developer actually doesn’t need:

• Screen I/O (see CRT note above).

• File I/O as it described in “jBASE BASIC.pdf” – only wrappers like
F.READ etc.

• File creation, clearing etc – all done via wrappers again.

• Writing a PROGRAM, so no STOP, ABORT etc. The only place where
PROGRAM can still exist is PRINTER.ID hook routine (though last time
I’ve tried it was around R04 times).

• Many other things.

But to understand the language a little better it could be a good exercise
to write something that uses some these things. Let this exercise be a game.
Am I kidding? No. A classic “fifteen” game using text mode of a terminal
session. It was written by me a long time ago and still works perfectly being
compiled under R10.

The screen of this game looks like:

90

Besides things that as a T24 person you wouldn’t need we’ll learn some
useful stuff as well: arrays, for example.

Let’s see how to do that. Here the start of this program:

001 PROGRAM FIFTEEN

002 *===

003 * BY V.KAZIMIRCHIK (KZM), 200712

004 * 15 Puzzle.

005 * Feel free to distribute provided that you fully

006 * retain this header.

007 * Author bears no responsibility if you run it during

008 * work hours :-))

009 * ENJOY!

010 *===

Here we have typical header that I recommend to use. The more com-
ments, the better.

011 GOSUB INIT

012

It’s a good idea to have subsections rather than top-down code. Here’s
section INIT at the very bottom of our program:

91

149 *==

150 INIT:

151 ECHO OFF

152

153 CRT @(-1)

154

155 * Generate the field

156

157 V.BOARD = ’’

158 V.FINI = ’’

159

160 FOR V.I = 1 TO 15

161

162 LOOP

163 V.NUMBER = RND(15) + 1

164 FIND V.NUMBER IN V.BOARD SETTING V.DUMMY ELSE

165 V.BOARD<-1> = V.NUMBER

166 BREAK

167 END

168 REPEAT

169

170 V.FINI<V.I> = V.I ;* solved array for comparison

171

172 NEXT V.I

173

174 V.BOARD<16> = 0

175 V.FINI<16> = 0

176

177 GOSUB DRAW.FIELD

178

179 RETURN

180

181 END

Note:

• “V.” prefix used for variables (even for a loop counter) – it’s a good
idea to have some standard prefix which saves a developer from occasionally
choosing a name which is used for a global T24 variable (and the latter can

92

be even so simple as “A”, “C”, “E” – see I COMMON). Some people use “LOC.”
being influenced by my very old document (and I probably was influenced
by somebody else writing it) but nowadays I find it too long. Some people
use “Y.”... It’s up to you.

• Variables V.BOARD and V.FINI which are used to store so-called “dy-
namic array”. Actually dynamic array is a string with delimiters – @FM,
@VM and @SM which I hope you already know. Even in I COMMON they are
declared as FM, VM and SM accordingly (and assigned in I EQUATE). So in
T24 subroutine you can use just “FM” while in a standalone program you’ll
have to prefix it with “@”.

• CRT usage to clear the screen, FOR...NEXT loop, LOOP...REPEAT loop.

• RND() function to get a random number in the range from 1 to 15.

• FIND statement to find a value in dynamic array.

Back to dynamic arrays. I wouldn’t go into a discussion when to use
dynamic artray and when to use a dimensioned one (we saw a dimensioned
array earlier – it’s R.NEW). In the code we see that dynamic array elements
are addressed using angle brackets (“-1” means “the new element”).

Another GOSUB here. Where it leads us?

93

120 *===

121 DRAW.FIELD:

122

123 GOSUB CLEAR.FIELD

124 GOSUB DRAW.BORDER

125

126 FOR V.PIECE = 1 TO 16

127 GOSUB DRAW.PIECE

128 NEXT V.PIECE

129

130 CRT @(25,0):SYSTEM(40):@(-4):

131 CRT @(8,22):

132

133 RETURN

OK, what’s new here? Some positioned screen output using CRT, 3 more
GOSUBs. See them one by one:

134

135 *===

136 CLEAR.FIELD:

137

138 FOR V.I = 2 TO 19

139

140 IF V.I NE 3 THEN

141 CRT @(0, V.I):

142 CRT @(-4):

143 END

144

145 NEXT V.I

146

147 RETURN

148

94

087 *===

088 DRAW.BORDER:

089

090 FOR V.I = 4 TO 19

091 CRT @(22,V.I):’|’:

092 CRT @(57,V.I):’|’:

093 NEXT V.I

094

095 RETURN

096

097 *===

098 DRAW.PIECE:

099

100 V.X = MOD(V.PIECE+3, 4) * 8 + 24

101 V.Y = (INT((V.PIECE-1) / 4) + 1) * 4

102

103 V.NUMBER = V.BOARD<V.PIECE>

104 IF V.NUMBER EQ 0 THEN

105 CRT @(V.X+1,V.Y):’ ’:

106 CRT @(V.X,V.Y+1):’ ’:

107 CRT @(V.X,V.Y+2):’ ’:

108 CRT @(V.X,V.Y+3):’ ’:

109 END ELSE

110 CRT @(V.X+1,V.Y):’ ’:

111 CRT @(V.X,V.Y+1):’| |’:

112 CRT @(V.X,V.Y+2):’| ’:FMT(V.NUMBER,"2R"):’ |’:

113 CRT @(V.X,V.Y+3):’| |’:

114 END

115

116 CRT @(8,22):

117

118 RETURN

119

I’ve made spaces visible intentionally in lines 105-108, 111 and 112.

By the way, it’s a common mistake even experienced guys sometimes do

95

– if you forget a RETURN at the end of a section, execution continues to the
next one, providing unexpected program flow.

At last we’ve returned to the main section. Let’s continue:

013 LOOP

014

015 IF V.BOARD EQ V.FINI THEN

016 V.TEXT = ’YOU WIN’

017 PRINT V.TEXT

018 INPUT V.DUMMY

019 BREAK

020 END

021

The main loop starts here and ends almost where main section does.
Note BREAK statement to exit from the main loop when the puzzle is solved.
We saw earlier that dynamic array V.BOARD contains tiles’ numbers in their
shuffled state (initiated using random number function) and array V.FINI

contains numbers in the sorted (i.e. solved) mode. Since dynamic arrays
are strings they can be simply compared using ‘‘EQ’’. Instead of ‘‘EQ’’
symbol ‘‘=’’ could be used.

Again, I’m not pressing on you but for me it’s tidier to use ‘‘=’ for
assignment and ‘‘EQ’’, ‘‘LT’’, ‘GE’’ etc for comparison. Again, it’s up
to you.

Have you noticed text formatting with empty lines between blocks of
code and offsets inside IFs, WHILEs etc? Readability of code is crucial. Even
if you return back to your own code in one year time, the more this code is
readable, the better. In the examples here I don’t show the leftmost code
offset of 6 characters that I’m accustomed to (to save some space). Automatic
offsets can be achieved by command “BI” in JED editor, though defaults are
not my favourite and I set it up with an option to JED:

jsh mb10 ~-->JED ETC.BP FIFTEEN (B3,2)

96

Wher have we stopped?

022 V.KEY = KEYIN()

023

024 BEGIN CASE

025

Here we wait for keyboard input and start a CASE processing the key
that was pressed.

026 CASE V.KEY EQ CHAR(27) ;* Esc

027

028 V.KEY.2 = KEYIN() ;*]

029 V.KEY.3 = KEYIN()

030

031 FIND 0 IN V.BOARD SETTING V.ZERO.POSN ELSE

032 TEXT = ’FATAL ERROR 1’

033 PRINT TEXT

034 BREAK

035 END

036

037 BEGIN CASE

If it was ESC then most probably it’s a starting point to the combination
of symbols that is resulted from pressing one of arrow keys. Without much
of an analysis we take the second character (which in this case is “]”) and
then the third one that tells us if one key of that four which are of interest
to us was pressed.

Then we look where do we have an empty square at the puzzle. (With
handling the situation when we don’t have one – quite unlikely but who
knows?)

And only then we’re ready to proceed all arrow keys (of course if this is
really the case):

97

038 CASE V.KEY.3 EQ ’C’ AND MOD(V.ZERO.POSN, 4) NE 1 ;*

right

039

040 V.POSN.ZERO.NEW = V.ZERO.POSN - 1

041 GOSUB SWAP.PIECES

042

043 CASE V.KEY.3 EQ ’B’ AND V.ZERO.POSN GE 5 ;* down

044

045 V.POSN.ZERO.NEW = V.ZERO.POSN - 4

046 GOSUB SWAP.PIECES

047

048 CASE V.KEY.3 EQ ’D’ AND MOD(V.ZERO.POSN, 4) NE 0 ;* left

049

050 V.POSN.ZERO.NEW = V.ZERO.POSN + 1

051 GOSUB SWAP.PIECES

052

053 CASE V.KEY.3 EQ ’A’ AND V.ZERO.POSN LE 12 ;* up

054

055 V.POSN.ZERO.NEW = V.ZERO.POSN + 4

056 GOSUB SWAP.PIECES

057

058 END CASE

Here you can see that we not only analyse a key being pressed, but also
check if the empty space on the board allows an adjacent tile to move in re-
quested direction to close it. To move a tile we use the section SWAP.PIECES
which in turn uses section DRAW.PIECE to draw tiles:

98

075 *===

076 SWAP.PIECES:

077

078 V.BOARD<V.ZERO.POSN> = V.BOARD<V.POSN.ZERO.NEW>

079 V.BOARD<V.POSN.ZERO.NEW> = 0

080 V.PIECE = V.POSN.ZERO.NEW

081 GOSUB DRAW.PIECE

082 V.PIECE = V.ZERO.POSN

083 GOSUB DRAW.PIECE

084

085 RETURN

086

What if some other key was pressed? See here:

059

060

061 CASE 1

062

063 V.KEY = UPCASE(V.KEY)

064 IF V.KEY EQ ’Q’ THEN BREAK

065

066 END CASE

067

068 REPEAT

We understand only “Q” and quit the game if it was pressed (regardless
the case). All other keys are ignored and we start the main loop again.

The last piece of this jigsaw puzzle:

069

070 CRT @(-1)

071 ECHO ON

072 STOP

073

074

99

I’d recommend to collect all the source above and try to compile it, make
some improvements etc.

Don’t forget to use “BI” command of JED if you do that so you’ll not
end up with something like:

013 LOOP

014

015 IF V.BOARD EQ V.FINI THEN

016 TEXT = ’YOU WIN’

017 PRINT TEXT

018 INPUT DUMMY

019 BREAK

020 END

021

022 V.KEY = KEYIN()

023

024 BEGIN CASE

025

026 CASE V.KEY EQ CHAR(27) ;* Esc

25 Local applications, code rating, enrichment,

AUTO.ID.START, SEARCH, jBASE file

types, jstat

B ack to T24 programming. In T24 you can create your own application

using a set of templates provided by Temenos. Though we are on R10 here
with new and a bit sophisticated templates, let’s start from an old one (which
however still works). The simplest one is “L-type” which refers to the value
of PGM.FILE field type.

Copy the file TEMPLATE.L from T24 BP to ETC.BP directory, rename it to
your chosen name. (Here I don’t even remind you that you have to choose
a meaningful name and this name shouldn’t be already in use – remember

100

“jshow -c” command?)

Firstly we need to think of a plausible reason to use a local application.
Earlier we saw how FT input method could be checked (OFS, terminal,
Browser). Now imagine that we want to store this method in a local appli-
cation rather than trash the core field credit.their.ref.

To proceed with data storage we use “L-type” application because it
doesn’t allow user input. Imagine that we write to an “H-type” application.
Not only we need to be sure that nobody edits the record we’re trying to
write into, we also need to think about history record creation, audit fields
etc. Of couse there is relatively new API subroutine F.LIVE.WRITE which
handles both history and audit trail, but if we’re not going to input records
manually or via OFS, “L-type” application is the best choice.

OK, then the name chosen will be, say, FT.CREATION.METHOD.

After the file TEMPLATE.L is renamed to FT.CREATION.METHOD, it’s nec-
essary to rename the subroutine itself:

File ETC.BP , Record ’FT.CREATION.METHOD’ Insert 06:53:42

Command->

0001 * Version 6 22/05/01 GLOBUS Release No. 200511

31/10/05

0002 *--------------------------------

0003 * <Rating>308</Rating>

0004 *--------------------------------

0005 SUBROUTINE FT.CREATION.METHOD

You might ask – what’s the“Rating” tag is? When no more available
(for the client) EB.COMPILE tool is used to compile the local source, so-called
“Rating” is calculated. The less this rating is (it could be below zero), the
better. Does it reflect the quality of the code? In my opinion, only to some
extent. It greets comments, for example. But how it can be sure a comment
isn’t “bla-bla-bla”? Another example – it doesn’t like long routines without
breaking to subsections not regarding the task. OK, I agree with this rating

101

that “GOTO” is evil but see the header of the standard template – it says
the rating is 308 which is not very good. Once I’ve tried to compile a core
routine SEC.TRADE that came to my possession. The purpose was to proceed
with some debugging. Its rating was about 6000.

Anyway we’re going to use BASIC and CATALOG commands so this rating
will not be applied.

Back to template editing. At the very bottom there is subsection called
DEFINE.PARAMETERS. We need to develop the table structure suitable for our
task and put it into respective arrays (F, N, T etc – we saw all them before).

We need only one field to store FT input method. We have 3 methods
so far (see ANC.TEST routine) – “INPUT VIA BROWSER”, “INPUT VIA
TERMINAL” and “OFS INPUT”. Instead of storing text it’s a good idea to
assign codes to these descriptions – 1, 2 and 3 accordingly. How to see the
text near the code – we’ll see later (it’s called “enrichment”).

So let’s name our field and put its size and data type into the respective
arrays:

File ETC.BP , Record ’FT.CREATION.METHOD’ Insert 06:57:12

Command->

0136 Z+=1 ; F(Z) = ’INPUT.METHOD’ ; N(Z) = ’1.1’ ; T(Z) = ’’

Though it’s not recommended by Temenos to put several lines of code
into one line in the source file, these lines are short and belong to one field
definition, so be it.

Our application doesn’t allow manual input, so N and T arrays don’t
really do any work here, but let’s keep things tidy from the very beginning.
In addition, id is also described using the same definitions and id will be
input “manually” (even if we choose it from a list rather than type):

102

File ETC.BP , Record ’FT.CREATION.METHOD’ Insert 06:59:45

Command->

0129 ID.F = ’FT.ID’ ; ID.N = " " ; ID.T = " "

In this example the simplest solution for id is to keep it the same as FT
id. How do we know the length and data type of FT id?

STANDARD.SELECTION record doesn’t give us the ultimate answer:

1. 1 SYS.FIELD.NAME. @ID

2. 1 SYS.TYPE....... D

3. 1. 1 SYS.FIELD.NO 0

4. 1. 1 SYS.VAL.PROG IN2A&&&L##/#####/##############

6. 1 SYS.DISPLAY.FMT 25R

The id is displayed in 25-character field being right-justified, but how
many characters can we input when FT id is required?

It’s about time to look into AUTO.ID.START application. It’s used to
generate next id for applications. Remember that we’ve used F3 or omitted
id in OFS message to get a new id generated for us?

In old times there was one generic scheme to get next id number for the
deals – every transaction-related application has a prefix (e.g. FT, LD, MM
etc), then goes the year (2 last digits), then current day number in a year
(which gives us 3 more digits in the range of 001-366), then – 5 digits of
sequential number for the current day. You can still see it in MM-related
record:

R10 Model Bank Auto ID Start SEE

KEY............... MONEY.MARKET

--

1. 1 DESCRIPTION.... Money Market

2. 1 APPLICATION.... MM.MONEY.MARKET

3. 1 ID.START....... MM9820400001

103

But what to do if there is more than 99,999 deals in a day?

First attempts were to increase FT id span by including there branch
id and increasing the sequential number, but then there was another prob-
lem: process of getting a sequential number assumed that there is a counter
somewhere that is to be locked and subsequently updated by every process
running in parallel. That counter is stored in LOCKING application:

FBNK.MM.MONEY.MARKET

001 MM1000500059

002 MM9820400001

To get rid of locking (which affects performance) it was decided to have an
option of non-sequential ids (which, in addition, could contain not only digits
but also alphabetic symbols). See FT-related record of AUTO.ID.START:

R10 Model Bank Auto ID Start SEE

KEY............... FUNDS.TRANSFER

--

1. 1 DESCRIPTION.... FUNDS TRANSFER UNIQUE ID

2. 1 APPLICATION.... FUNDS.TRANSFER

3. 1 ID.START....... FT

4. 1 UNIQUE.NO...... YES

5. 1 BASE.TABLE.....

6. 1 ID.LENGTH......

Allowed characters and variable portion length can be defined in fields
base.table and id.length, by default base.table consists of uppercase
Latin characters (excluding vowels) and digits from 0 to 9; for generating a
random id suffix there is 5 digits and/or letters. We saw these ids before –
when we’ve tried to create a new FT record – FT10005QWCFC, FT10005SVD9T,
FT10005K4V1H etc.

Why vowels are excluded? For not getting foul words being generated.
Yes, I’m not kidding.

So we put the following values to provide id definition of our application:

104

File ETC.BP , Record ’FT.CREATION.METHOD’ Insert 06:53:42

Command->

0129 ID.F = ’FT.ID’ ; ID.N = "12.12" ; ID.T = "A"

Where “12.12” means “maximum 12, mininum 12” accordingly. “A”
in ID.T refers to IN2A system check routine which was mentioned earlier
(alphanumeric input).

Last but not least – put the comment into routine header. Comment
needs to contain your name, current date and the purpose of this develop-
ment:

File ETC.BP , Record ’FT.CREATION.METHOD’ Insert 19:23:22

Command->

0005 SUBROUTINE FT.CREATION.METHOD

0006 ***

0007 *

0008 * V.Kazimirchik, 1/Oct/2010. New application to store

0009 * FT deal input method.

0010 *

0011 ***

Now let’s compile this template. Then we need FILE.CONTROL and
PGM.FILE records for our application.

FILE.CONTROL record can be copied from the record “FUNDS.TRANSFER”
– thus we make sure that both these applications have the same type. Since
there’s no C function for FILE.CONTROL, we just copy it from back-end
and then amend in JED. (T24 function I for an existing record also doesn’t
work for FILE.CONTROL.)

105

jsh mb10 ~-->COPY FROM F.FILE.CONTROL

FUNDS.TRANSFER,FT.CREATION.METHOD ←↩

1 records copied

jsh mb10 ~-->JED F.FILE.CONTROL FT.CREATION.METHOD

Correct definition in field 1 and contents of field 3 (since we don’t need
$NAU and $HIS files) and (if you feel like it) also correct audit trail:

0001 FT creation method

0002 FT

0003

0004 2

0005 5

0006 FIN

0007 TRANSACTION

0008 Y

0009 N

0010 BIN

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020 1

0021 1 VLADIMIRK

0022 1008302252

Here’s a new PGM.FILE record:

106

R10 Model Bank PROGRAM FILE, INPUT

PROGRAM FT.CREATION.METHOD

--

1 TYPE.............. L

2. 1 GB SCREEN.TITLE FT CREATION METHOD

3 ADDITIONAL.INFO...

4. 1 BATCH.JOB......

5 PRODUCT........... FT FUNDS TRANSFER

Now it’s time to create insert file for our application. Yes, we have only
one field at the moment but who knows what business guys might ask us to
squeeze into that application in the future?

To do that firstly log in into T24, then log out (yes, we need some core
variables in common area, otherwise it blows up). Then:

jsh mb10 ~-->FILE.LAYOUT ←↩

Use Select List or Input Individually either :

List of FILE names from which to build insert modules

via their dictionarys

List of PROGRAM names from which to build insert modules

through calling.

Enter Program/File(s) : FT.CREATION.METHOD ←↩
Enter Program/File(s) : ←↩
Build Insert from File (D)ictionarys or (P)rograms or

(Q)uit

<CR = (P)rograms> : ←↩

Program is FT.CREATION.METHOD

Enter output Name - <CR> = I F.Entryname : ←↩

Enter PREFIX or <CR> = NONE :

107

Here we need to create a prefix which is attached to field names in our
application. We need to have it more or less unique. Why more or less?
Because if in another application we have similar or same prefix, full field
names with prefix might occure to be the same. But it hurts only if we
include both insert files in a routine. Let’s see an example:

If we have field with name amt and our prefix is FT.TAX, in summary it
makes FT.TAX.AMT which is field 69 of FUNDS.TRANSFER which has prefix
FT and field name tax.amt.

By the way, the simpler the prefix is, the older is core application.

It’s an impossible task to see all core insert files for their prefixes, that’s
why I use the term “more or less”. If you know which inserts you’re going
to use in your development, go through them to be sure that resulting field
names won’t be the same. But here’s the better way –s try to invent some-
thing that looks a bit unusual, search for it in GLOBUS.BP, then – if not found
– use it.

E.g., for FT.CREATION.METHOD we intend to have the prefix “F.C.M.”:

jsh mb10 ~-->SEARCH GLOBUS.BP ←↩

String :F.C.M. ←↩
String : ←↩
Record Keys : * ←↩

No Records selected

Now we have really unique prefix. Back to the screen of FILE.LAYOUT:

Enter PREFIX or <CR> = NONE : F.C.M. ←↩

Enter SUFFIX or <CR> = NONE : ←↩

Processed 1 matrix entries for FT.CREATION.METHOD program

108

What’s in there?

jsh mb10 ~-->CT BP I F.FT.CREATION.METHOD ←↩

I F.FT.CREATION.METHOD

001 * File Layout for FT.CREATION.METHOD Created 3 OCT 10

at 10:18AM by telnet

002 * PREFIX[F.C.M.] SUFFIX[]

003 EQU F.C.M.INPUT.METHOD TO 1, FtCreationMethod InputMethod

TO 1

Here we can see that there is a recent addition of field reference con-
structed without prefix (FtCreationMethod InputMethod). To my knowl-
edge, this functionality appeared around R08. I still prefer the old notation.
(You never know what T24 release will be there on your next assignment, also
there were many things declared and then discontinued, like VB scripting in
Globus Desktop.)

Yes, FILE.LAYOUT created insert file in BP subdirectory of bnk.run. Since
we need it in ETC.BP (under no circumstances we’re going to put it to
GLOBUS.BP) we can use jBASE commands COPY and DELETE or move the
file using OS commands.

Next step in creation of a local application – creation of data and dic-
tionary files. To do it login to T24 and type CREATE.FILES from AWAITING

APPLICATION prompt, for “COMPANY CODE” input BNK, for “LIST NAME”
just press ←↩ , for “FILE NAME” input FT.CREATION.METHOD, for the same
question being repeated just press ←↩ , then Y to continue.

After scrolling up your terminal window you can see the following:

[417] File ..\bnk.dict\F FT CREATION METHOD]D created ,

type = J4

[417] File ..\bnk.data\ft\FBNK FT CREATION METHOD created ,

type = JR

Note about file types listed above: by default data files are now created

109

with type “JR” which means “resilient”. You can look into jBASE manuals
for more explanations but the general idea is: a resilient file wouldn’t corrupt,
neither it needs resizing. Let’s see the status of the new file:

jsh mb10 ~-->jstat -v FBNK.FT.CREATION.METHOD ←↩

File Path = ..\bnk.data\ft\FBNK FT CREATION METHOD

File Type = JR, Hash method = 5, Created = Sun Oct 3

11:05:18 2010

Frame size = 4096, OOG Threshold = 2048

File size = 8192, Freespace = 0 frames

Internal Modulo = 3/7/19, External Modulo = 31

Inode no. = 393420, Device no. = 17308

Accessed = Wed Sep 01 12:40:17 2010, Modified = Wed Sep 01

12:40:17 2010

Backup = YES, Log = YES, Rollback = YES, Secure updates =

YES

Deallocate pointers : NO Deallocate frames NO

Record Bytes = 0, Record Count = 0

Bytes/Record = 0, Bytes/Group = 0

Data Frames = 0, Ptr Frames = 0

OOG Bytes = 0, OOG Frames = 0

Sum Squares = 0, Std Dev Mean = 1

Yes, secure updates are on, so this file won’t become corrupted... at least
that’s what manuals say. To have such file type support you need “jBASE
non-stop” licence.

General note: properly sized J4 file is faster than JR file so I wouldn’t
recommend to have all your files in JR format.

Since file type isn’t “INT”, we need to run CREATE.FILES for all compa-
nies. Results look like:

[417] File ..\bnk.data\ft\FEU1 FT CREATION METHOD created ,

type = JR

110

Dictionary already exists so only data file is created. Note company
mnemonic (FEU1) in file name. Now you know that whenever you see the con-
stant FBNK in the source code, you are looking into something that wouldn’t
work in multi-company environment.

Having done that, now we’re facing the last step – creation of STAN-
DARD.SELECTION record. At AWAITING APPLICATION prompt type SS, I

FT.CREATION.METHOD. You’ll see record which is so far empty. Go to field re-
build.sys.fields, input there Y and commit the record. Return to AWAITING
APPLICATION prompt and repeat the last command (or use F7 twice) to
see that now we have populated STANDARD.SELECTION record.

Where the core took field definitions? From the compiled source of our
application. We used this technique before to retrieve structure arrays from
FT.TXN.TYPE.CONDITION.

There are different tools which can help you to build all components of
your local application. There is a core application EB.TABLE.DEFINITION
which can be used to create local applications without programming, but I
wanted you to pass all the way in the low level at least once for better
understanding.

In next section we’ll see how to update our new local application from a
VERSION routine. For this task we’ll use one attached to VERSION field
input.routine.

26 File I/O

F ile I/O in T24 – as I’ve written above – is done via wrappers. They

are described in “Subroutine Guide.pdf” so I wouldn’t list all of them, just
present some examples.

Let’s take the logic from our routine ANC.TEST – copy its source to file
INPUT.TEST and modify the following way:

111

001 SUBROUTINE INPUT.TEST

002 * V.Kazimirchik, 3/Oct/2010. Store FT input method

003 * in application FT.CREATION.METHOD.

004 * Input routine for FT version.

005

This is the header – subroutine name, comments. It’s good to see in the
source which type of routine we have here.

006 $INSERT I COMMON

007 $INSERT I EQUATE

008 $INSERT I GTS.COMMON

009 $INSERT I F.OFS.SOURCE

010 $INSERT I F.FT.CREATION.METHOD

011

Inserts that we need for our work. Our new application insert is also
here.

012 * Open file

013

014 FN.FCM = ’F.FT.CREATION.METHOD’ ; F.FCM = ’’

015 CALL OPF(FN.FCM, F.FCM)

016

Here we’re opening our local application using OPF wrapper subroutine.
It supports caching of opened files so if this file is already opened by another
subroutine, whether a core or a local one, file wouldn’t be reopened and
performance wouldn’t suffer.

After the file has been opened the variable FN.FCM contains full file hame.
(It’s FBNK.FT.CREATION.METHOD in case we’re working in the main company
with mnemonic “BNK” used for financial files.) In fact, sometimes OPF is
used only to obtain full file name, e.g. for subsequent SELECT.

112

017 * Check input method

018

019 V.METHOD = ’’

020

021 IF GTSACTIVE THEN

022 IF OFS$SOURCE.REC<OFS.SRC.SOURCE.TYPE> EQ ’SESSION’

THEN

023 V.METHOD = 1 ;* ’INPUT VIA BROWSER’

024 END ELSE

025 V.METHOD = 3 ;* ’OFS INPUT’

026 END

027 END ELSE

028 V.METHOD = 2 ;* ’INPUT VIA TERMINAL’

029 END

030

Here’s our main logic transferred from ANC.TEST. Also – comment at the
same line with code is introduced.

031 * Compose a record

032

033 R.FCM = ’’

034 R.FCM<F.C.M.INPUT.METHOD> = V.METHOD

035

The record which we’re going to write to our local application is initialised
and then populated. We address field via its definition in the insert file.

036 * Write a record

037

038 CALL F.WRITE(FN.FCM, ID.NEW, R.FCM)

039

040 RETURN

041 END

042

113

F.WRITE awaits a dynamic array as 3rd parameter, that’s why we’ve pre-
pared the record this way.

Now – compile INPUT.TEST, create EB.API record for it, then edit the
VERSION record FUNDS.TRANSFER,TEST – remove ANC.TEST since we don’t
need it anymore and attach INPUT.TEST as input.routine. Launch this
VERSION in terminal, create FT record, then do it in Browser... hope you
can do it all by yourself now?

See then what’s there in application FT.CREATION.METHOD:

R10 Model Bank FT CREATION METHOD SEE

FT.ID............. FT10005HRTNY

--

1 INPUT.METHOD...... 2

R10 Model Bank FT CREATION METHOD SEE

FT.ID............. FT10005SG89D

--

1 INPUT.METHOD...... 1

Of course user won’t have to memorize what “2” means etc. Earlier I’ve
wrote that we’ll see how so-called “enrichments” are displayed. In our case
we have several methods to achieve that:

• Create another local application which contains records 1, 2 and 3 and
the field (usually called decription) which contains... well, descriptions of
these codes. These descriptions even can be made multi-lingual so user will
see it in his native language (provided that it is set up in core application
LANGUAGE). Then this application could be used as CHECKFILE for appli-
cation FT.CREATION.METHOD. This is a preferred way and if you want,
proceed with it yourself. Note that it has to be based on a template that
allows input so you’ll be able to input there your records and – if necessary
– amend their descriptions later.

114

• Put descriptions into the source code of FT.CREATION.METHOD.
Not the best way but acceptable assuming that we have only 3 codes. Let’s
try to proceed with it.

It’s a bit tricky to assign the enrichment since TEMPLATE.L doesn’t allow
input and therefore has much less places where a user-defined logic can be
added. The only place that is more or less adequate – section CHECK.ID.
The minor inconvenience is that at that stage application record isn’t yet
available in global variable R.NEW. We only have ID.NEW to start with, so we
need to read the record in question before the core does the same. We’re
causing no harm in so doing because the core then will take this record from
cache so no I/O increase here.

We have our application table already opened by the core into global file
variable F.FILE. We’ll read application record using F.READ so the cache will
be used afterwards.

Enrichments are stored in global array T.ENRI which we are able to
modify. So the changes will be:

020 $INSERT I F.FT.CREATION.METHOD ;* KZM

and

096 * KZM S

097 * Setting an enrichment

098

099 V.ERR = ’’

100 CALL F.READ(’F.’ : APPLICATION, ID.NEW, R.APP, F.FILE,

V.ERR)

101

102 IF V.ERR THEN RETURN

103

Here we read the record (note global variable APPLICATION) and proceed
with possible error. One might ask: there should be the record with this id,
what else might happen that triggers an error? Answer: anything, starting

115

from network error or a server error. Wherever an error might be caught, we
need to provide the correct way of handling it. In our case we simply end
the processing since enrichment display isn’t that crucial. In other cases you
might need to raise a fatal error or provide the error code to be returned to
calling routine to be analysed there.

104 V.FLD = R.APP<F.C.M.INPUT.METHOD>

105 V.ENRI = ’’

106

Here we extract field value from the record and initialise the local variable
necessary for the result of analysis. By the way, local variables are visible
only inside current source file (though in all subsections) so don’t try to
invent unique names for them.

However variable names are to be understandable.. see some exceprts
from real code:

L.AM = S.1 + S.2 + S.3

or:

APPL = ’LD’

ARR.X = ARR.A

GOSUB AMEND.STMT.ARRAY

ARR.A = ARR.X

or:

IF L.CH THEN L.CH=L.CH

But there is another side in variables naming:

116

LOC.G.FN.B.TPU.RCSE.PROCESS.LIST= \
’F.B.TPU.RCSE.PROCESS.LIST’

LOC.G.F.B.TPU.RCSE.PROCESS.LIST = ’’

CALL OPF(LOC.G.FN.B.TPU.RCSE.PROCESS.LIST,

LOC.G.F.B.TPU.RCSE.PROCESS.LIST)

CALL F.READU(LOC.G.FN.B.TPU.RCSE.PROCESS.LIST,

LOC.ID.B.TPU.RCSE.PROCESS.LIST,

LOC.R.B.TPU.RCSE.PROCESS.LIST,

LOC.G.F.B.TPU.RCSE.PROCESS.LIST,

LOC.ER.B.TPU.RCSE.PROCESS.LIST, ’E’)

IF LOC.ER.B.TPU.RCSE.PROCESS.LIST NE "RECORD LOCKED" THEN

LOC.R.B.TPU.RCSE.PROCESS.LIST= \
LOC.ID.B.TPU.RCSE.PROCESS.LIST

CALL F.WRITE(LOC.G.FN.B.TPU.RCSE.PROCESS.LIST,

LOC.ID.B.TPU.RCSE.PROCESS.LIST,

LOC.R.B.TPU.RCSE.PROCESS.LIST)

CALL F.RELEASE(LOC.G.FN.B.TPU.RCSE.PROCESS.LIST,

LOC.ID.B.TPU.RCSE.PROCESS.LIST,

LOC.G.F.B.TPU.RCSE.PROCESS.LIST)

and so on for many pages...

Can you read this source? Probably no. One good thing with this code
– here line continuations in jBASE are introduced. You can continue on the
next line after comma or use backslash for this purpose.

OK, go further with our task.

117

107 BEGIN CASE

108

109 CASE V.FLD EQ 1

110 V.ENRI = ’INPUT VIA BROWSER’

111

112 CASE V.FLD EQ 2

113 V.ENRI = ’INPUT VIA TERMINAL’

114

115 CASE V.FLD EQ 3

116 V.ENRI = ’OFS INPUT’

117

118 END CASE

119

Here’s the main logic...

120 T.ENRI<F.C.M.INPUT.METHOD> = V.ENRI

121

122 * KZM E

Finally, here’s the assignment of enrichment. As you see, I’ve put com-
ments of all changes to template code, marking the start and the end with
“KZM S” and “KZM E” accordingly.

Result:

R10 Model Bank FT CREATION METHOD SEE

FT.ID............. FT10005HRTNY

--

1 INPUT.METHOD...... 2 INPUT VIA TERMINAL

And – it works in Browser as well:

118

Global arrays and variables require extreme care. Here we knew what
to do and how it works. Sometimes people try to amend, for example, T

array on the fly, trying to make a field NOINPUT depending on other fields’
values... It worked in Desktop, under Browser it doesn’t. In case of getting
such requirements probably it’s a good idea to rethink the whole business
process and not to try to rape the system.

27 Changing structure of a local application

– amending field type

OK, but what if we want to check the input method when FT records

are amended? In our VERSION we have number of authorisations set to
1, which means that FT record created using this VERSION can be later
amended.

It’s necessary to note that some T24 applications allow amendment of

119

records even after authorisation, but FUNDS.TRANSFER does not.

Since the field input.method used to store this information is sigle-
valued we need to make it multi-valued. How?

Firstly amend the source code:

0166

0167 Z+=1 ; F(Z) = ’XX.INPUT.METHOD’ ; N(Z) = ’1.1’ ; T(Z) =

’’

0168 *

Then compile the source and rebuild STANDARD.SELECTION record.
The result:

1. 3 SYS.FIELD.NAME. INPUT.METHOD

2. 3 SYS.TYPE....... D

3. 3. 1 SYS.FIELD.NO 1

4. 3. 1 SYS.VAL.PROG IN2

5. 3 SYS.CONVERSION.

6. 3 SYS.DISPLAY.FMT 1R

7. 3 SYS.ALT.INDEX.. N

8. 3. 1 SYS.IDX.FILE

9. 3 SYS.INDEX.NULLS

10. 3 SYS.SINGLE.MULT M

11. 3 SYS.LANG.FIELD. N

12. 3 SYS.GENERATED.. Y

And we can also see it on the application screen:

R10 Model Bank FT CREATION METHOD SEE

FT.ID............ FT10005HRTNY

--

1.1 INPUT.METHOD... 2 INPUT VIA TERMINAL

Now let’s amend the routine INPUT.TEST which is responsible for popu-

120

lation of this field:

0004 * Input routine for FT version.

0005 *

0006 * 14/Sep/2010: field INPUT.METHOD is now multi-valued.

0007

Here – a comment in the header describing the nature of this change.

0033 * Read a record (even if it doesn’t exist)

0034

0035 CALL F.READ(FN.FCM, ID.NEW, R.FCM, F.FCM, V.ERR)

0036

0037 * Compose or update a record

0038

0039 V.INP.METHOD = R.FCM<F.C.M.INPUT.METHOD>

0040 V.INP.METHOD<1,-1> = V.METHOD ;* add a new value

0041 R.FCM<F.C.M.INPUT.METHOD> = V.INP.METHOD

0042

Where “Compose a record” comment had been, we change the logic to
read a record from local application and amend it (or create a new one if
there was no such record before).

Let’s try it (under Browser). Result:

R10 Model Bank FT CREATION METHOD SEE

FT.ID............ FT10005HRTNY

--

1.1 INPUT.METHOD... 2

1.2 INPUT.METHOD... 1

We don’t see enrichment anymore... Well, that’s the dark side of hard-
coding. Leave it be for now.

121

28 Records locking

T HE question is: were we correct when we updated a record in a local

application without record lock? Probably we had to use F.READU instead of
F.READ?

In this particular case all is OK because:

• We update “L”-type application which users are not able to edit man-
ually.

• id of the record is the same as FT id and it’s impossible to edit the
same “master” FT record manually (or via OFS) in T24.

Actually, why it’s impossible?

When application code is invoked and the record is edited, T24 core
applies a lock to a record in $NAU file of the application. Even if such record
doesn’t exist, the lock shows the intention to update the record after editing.

In older releases of jBASE/TAFC we could use command SHOW-ITEM-LOCKS

to see current locks applied in the system. Nowadays locks are maintained
by using T24 application RECORD.LOCK to support complex multi-server
architectures etc. If we use READU Basic statement, old scheme is applied. So
for new releases use only F.READU which is a wrapper decribed in “Subroutine
Guide.pdf”.

To test this just open any record for editing (I function) and then see
that in application RECORD.LOCK a corresponding record appears – with
id like “FBNK.FUNDS.TRANSFER$NAU.FT10005HRTNY”. If you use terminal to
edit the record, you’ll see the same effect plus good old SHOW-ITEM-LOCKS

output:

122

PORT PID FILENAME RECORDKEY LOCK# PORT/-PID

1 2156 ..\bnk.data\ft\FB FT10005HRTNY 0x61998168,W ---

NK FUNDS TRANSFER

#NAU

29 Programming for enquiries

I′D better not go into details how enquiries are created – most of the

stuff is documented quite well. Where we can interfere with programming is:

• “Build” routine. Proceeds selection and may control and/or amend
selection criteria. For example, you can add additonal restriction if required
(or build a work file – it’s what manuals insist on but I know no examples of
that.

• “Conversion routine” to proceed a field in enquiry output. Include
I ENQUIRY.COMMON to your subroutine and manipulate O.DATA gloval vari-
able.

• Routine for “no-file enquiry”. Mainly used when there are several files
to take records from.

In old Desktop days I’ve used build routine to limit the number of records
that are being output as a result of, say, clicking on a drop-down field. You
had to wait a lot for enquiry core logic to build 200 pages (that’s the limit
defined in SPF; though it can be exceeded if necessary using application
ENQUIRY.REPORT). On early releases of jBASE in such situation you were
lucky enough to get “Segmentation violation” fatal error.

Under Browser it doesn’t make much sense though, because it shows
enquiry output by pages. However, let’s try this exercise.

Knowing that there are “special” enquiry names that are used for listing

123

a table, I’ve written a build routine to limit the default selection. In my
case it was history file of application ... yes, again FUNDS.TRANSFER. I
promise that my further examples will be based on some other application...

0001 SUBROUTINE ENQ.NARROW(P.ENQ)

0002

0003 *---*

0004 * V.Kazimirchik (KZM), 2005-2010.

0005 * Build routine for enquiry to narrow the output.

0006 *---*

0007

0008 $INSERT I COMMON

0009 $INSERT I EQUATE

Usual start...

0010

0011 IF P.ENQ<2,1> EQ ’’ THEN ;* no selections were input or

"list" menu item was clicked

0012

0013 V.DATE = TODAY

0014 CALL CDT(’’, V.DATE, ’-1W’)

0015

0016 V.JULDATE = ’’

0017 CALL JULDATE(V.DATE, V.JULDATE)

0018

0019 P.ENQ<2,1> = ’@ID’

0020 P.ENQ<3,1> = ’LK’

0021 P.ENQ<4,1,1> = ’FT’ : V.JULDATE[5] : ’...’

0022

0023 END

Main logic. Another T24 API subroutine (JULDATE) is introduced here.

124

0024

0025 *---*

0026

0027 RETURN

0028 END

That’s all. Now we need to attach this routine to the enquiry whose
name starts prom % sign (so-called “percent enquiry”):

R10 Model Bank ENQUIRY, INPUT

ENQUIRY........... %FUNDS.TRANSFER$HIS

--

1 PAGE.SIZE 4,19

2 FILE.NAME......... FUNDS.TRANSFER$HIS

3. 1 FIXED.SELECTION

4. 1 FIXED.SORT.....

5. 1 OPEN.BRACKET...

6. 1 SELECTION.FLDS.

7. 1. 1 GB SEL.LABEL

8. 1 SEL.FLD.OPER...

9. 1 REQUIRED.SEL...

10. 1 CLOSE.BRACKET..

11. 1 REL.NEXT.FIELD.

12. 1 BUILD.ROUTINE.. ENQ.NARROW

13. 1. 1 HEADER......

14. 1 FIELD.NAME..... 0

15. 1. 1 OPERATION... @ID

16. 1 COLUMN......... 1

17. 1 LENGTH.MASK.... 25R

...

35. 1 SINGLE.MULTI... S

14. 2 FIELD.NAME..... 1

15. 2. 1 OPERATION... TRANSACTION.TYPE

16. 2 COLUMN......... 27

17. 2 LENGTH.MASK.... 4L

Now relogin to T24 (yes such things are cached) and type FT L ; L from
AWAITING APPLICATION prompt (there are spaces surrounding ’;’ character).

125

Then – F5 to invoke the enquiry.

R10 Model Bank

--

FT09338B0P12;1 ACDI

FT09338BDR4R;1 OT40

FT09338BGT4J;1 AC

FT09338CNFRT;1 AC

--

Apparently our build routine wasn’t triggered (to double-check you can
input DEBUG statement to it and try again). Let’s try Browser (FT -> More

Actions -> List History File):

126

Yes we see here only records that start from FT10004 – from the last
work day.

Why it worked for Browser and did not under Classic... that’s the ques-
tion for Temenos Helpdesk.

Other enquiry-related types of subroutines are quite clearly documented
in manuals so you can try them yourself.

127

30 Performance, code analysis, local fields,

DYNAMIC.TEXT

W ell, probably – long-awaited topic – especially “performance”.

Usually it sounds like: “Our system is slow, do something” or “give us a
set of universal rules which (after implementation) will keep our system fast
forever”. In real life it’s not possible to find two T24 installations that are
equal. Some of them are even less equal, if you know what I mean.

Well, there’s a lot of places where T24 performance can be tackled. I’ll
try to provide typical causes and some advice on programming style.

If you’ve got poor performance, firstly check files sizing. There are tools
to do that, I’ll not go deeper here, nor I intend to stop at obvious reasons
like slow hardware/infrastructure etc.

It’s a good idea sometimes to give your code to some other person for a
fresh look. (I even manage to get a look at my own code after a year or two
and this look is really fresh as if I look at the code that is not mine.) The
reason is obvious – when you program some task, it is never a static thing
– something is always added, changed, removed etc. Finally after extensive
amendments it looks that it’s much more efficient to rewrite the whole thing.

Here are some examples that don’t hit your eye at the beginning but
there’s something in each of them to correct. Not necessarily these corrections
improve performance – the result might be readability, better structuring,
ease of maintenance etc.

You’ll see my answers in very small font (not to serve as a spoiler). All
code is real.

128

Example 1:

* Read current COMPANY record

FN.COMPANY = ’F.COMPANY’

F.COMPANY = ’’

CALL OPF(FN.COMPANY, F.COMPANY)

CALL F.READ(FN.COMPANY, ’US0010001’, REC.COMPANY, F.COMPANY,

LOC.ERR)

What’s wrong:

• There is a global variable ID.COMPANY which is to be used instead of ’US0010001’.

• We don’t need to read company record since it’s already available in global array R.COMPANY.

129

Example 2:

SUBROUTINE SAMPLE2(ENQ.DATA)

* This is a build routine for enquiry.

$INSERT I COMMON

$INSERT I EQUATE

GOSUB OPENFILES

IF Y.ERR NE ’’ THEN

ENQ.ERROR = Y.ERR

RETURN

END

GOSUB PROCEED

RETURN

* Subroutines *

OPENFILES:

Y.ERR = ’’

FN.ACCT = ’F.ACCOUNT’ ; F.ACCT = ’’

CALL OPF(FN.ACCT, F.ACCT)

FN.CUST = ’F.CUSTOMER’ ; F.CUST = ’’

CALL OPF(FN.CUST, F.CUST)

RETURN

PROCEED:

* Do something not relevant to our sample

RETURN

END

What’s wrong:

• There’s no Y.ERR setting logic in OPENFILES section so error analysis is not necessary.

• Reference to I ENQUIRY.COMMON where global variable ENQ.ERROR is declared is missing.

130

Example 3:

SUBROUTINE SAMPLE3

* This is an input routine for TELLER application.

* If local field INPUT.DATE exists, it’s populated with

* current bank date.

$INSERT I COMMON

$INSERT I EQUATE

$INSERT I F.TELLER

Y.LREF.POS = ’’

CALL GET.LOC.REF(’TELLER’, ’INPUT.DATE’, Y.LREF.POS)

IF Y.LREF.POS EQ ’’ THEN RETURN

R.NEW(TT.TE.LOCAL.REF, Y.LREF.POS) = TODAY

RETURN

END

Here we introduce core subroutine GET.LOC.REF which gets local field
position based on its name. Though not mentioned in “Subroutine guide”,
it can be safely used.

Local fields deserve a separate chapter. In brief – it’s emulation of many
fields in one field called local.ref. Thus we can add our fields to any
application (though losing one of 3 dimensions – local field can be multi-
valued but not sub-valued). 2 applications are responsible for setting up
local fields – LOCAL.TABLE and LOCAL.REF.TABLE.

There’s always a mess with local fields since their ids in LOCAL.TABLE
are numbers rather than names. Often somebody just changes local field
name (or, for example, uses a name with spaces inside) and many local
developments stop working. If names were ids it would be impossible (though
a smart guy can always reverse a field to prove who’s the master).

The last note goes not only for local fields (though I have never tried
to reverse a local field). Most applications – like CATEGORY – allow the
reversal of records though their ids might be used somewhere else. The result

131

is the loss of referential integrity and this might happen in T24. Normally
you find it out when COB crashes...

And – once you attached local fields to an application in LOCAL.REF.TABLE,
you’re not able to remove fields – only add (or amend their single/multi at-
tribute). Of course if you know what you do you can correct it from jsh but
it might be tricky – especially if application tables are already populated with
data. So you have to support the order of local fields at all working environ-
ments (otherwise some local code and VERSIONs will become incompatible
between areas).

What’s wrong in the example above:

• R.NEW is a dimensioned array with one dimension. So assignment statement should look like:

R.NEW(TT.TE.LOCAL.REF)<1, Y.LREF.POS> = TODAY

• We really don’t need to insert I F.TELLER here because the value of LOCAL.REF field position is stored in

global variable LOCAL.REF.FIELD. So finally the assignment statement might look like:

R.NEW(LOCAL.REF.FIELD)<1, Y.LREF.POS> = TODAY

132

Example 4

SUBROUTINE SAMPLE4(PAR.ERR.MSG)

* This is RUN routine for W-type template.

* It should be run by only one user at any time.

* Shall return error message if it’s being run

* by somebody else.

$INSERT I COMMON

$INSERT I EQUATE

* Make a lock to be sure nobody else runs this routine

FN.LOCKING = ’F.LOCKING’ ; F.LOCKING = ’’

CALL OPF(FN.LOCKING, F.LOCKING)

Y.LOCKING.ID = ’USER.SAMPLE4’

CALL F.READU(FN.LOCKING, Y.LOCKING.ID, R.LOCKING,

F.LOCKING.ID, Y.ERR, ’E’)

IF Y.ERR AND Y.ERR NE ’RECORD NOT FOUND’ THEN

PAR.ERR.MSG = ’BEING RUN BY ANOTHER USER’

END

* Do our logic here

RETURN

END

What’s wrong:

• No RETURN after raising the error so the processing will continue.

• We don’t need to open F.LOCKING since it’s already opened by core T24 -- see F.LOCKING variable in

I RULES.

• There should be call to F.RELEASE after finishing the processing (but only if we don’t write to the

record being locked):

CALL F.RELEASE(’F.LOCKING’, Y.LOCKING.ID, F.LOCKING)

133

Example 5:

SUBROUTINE SAMPLE5(PAR.RET.LIST, PAR.ERR.MSG)

$INSERT I COMMON

$INSERT I EQUATE

GOSUB INIT

GOSUB PROCEED

RETURN

* Subroutines *

INIT:

Y.LD.TYPE.POS = ’’

Y.LREF.NAME = ’PRODUCT.TYPE’

CALL GET.LOC.REF(’LD.LOANS.AND.DEPOSITS’, Y.LREF.NAME,

Y.LD.TYPE.POS)

IF Y.LD.TYPE.POS EQ ’’ THEN

PAR.ERR.MSG = ’NO LOCAL REF PRODUCT.TYPE’

RETURN

END

FN.CUST = ’F.CUSTOMER’ ; F.CUST = ’’

CALL OPF(FN.CUST, F.CUST)

RETURN

PROCEED:

* Do something - not relevant to our sample

RETURN

END

134

What’s wrong:

• There’s no any comment in routine header.

• There’s an error in section INIT and the return value of the subroutine was set accordingly, but there’s

no any error analysis in main section.

• Error message is to be composed of constant and variable part (otherwise in case of users with the

language other than English we’ll end up with many similar records in application DYNAMIC.TEXT). Here’s

the correct code:

PAR.ERR.MSG = ’NO LOCAL REF &’ :FM: Y.LREF.NAME

Some comments about DYNAMIC.TEXT: when a user with non-English
language sees a message in T24, in this application appears an unauthorised
record with specially formed id. For example, for a message “DO NOT EN-
TER” record id will be DO.NOT.ENTER and so on. All you have to do is to put
message translation into appropriate field and authorise DYNAMIC.TEXT
record. Next time that user will see that message in his native language.

But what if message has a variable part? E.g. “DO NOT ENTER
HERE”, “DO NOT ENTER THERE”, “DO NOT ENTER ANYWHERE”
and so on? Maybe it’s not a good example but imagine that we have a field
name as a variable part – as in example above. Answer is: use ampersand
(&) instead of variable part or parts, e.g.:

PAR.ERR.MSG = ’NO LOCAL REF &’ :FM: Y.LREF.NAME

or:

PAR.ERR.MSG = ’NO LOCAL REFS & AND &’ :FM: Y.LREF.NAME \
:VM: Y.LREF2.NAME

Then in DYNAMIC.TEXT we’ll have only the following IDs:

NO.LOCAL.REF.&

and

NO.LOCAL.REFS.&.AND.&

... and not hundreds of them like:

NO.LOCAL.REF.PRODUCT.NAME

NO.LOCAL.REF.PRODUCT.TYPE

NO.LOCAL.REF.INPUT.DATE

NO.LOCAL.REFS.INPUT.DATE.AND.INPUT.TYPE

135

Recently the new application for storing messages appeared in T24:
EB.ERROR. It’s intertwined with DYNAMIC.TEXT and I’m not absolutely
sure how it all exactly works in each case (I wrote earlier here that for out-
putting an error several different methods are used in T24).

In general, in most cases messages in T24 can be translated using these 2
applications. (Unfortunately it doesn’t apply to messages that are built into
BrowserWeb.war.)

Example 6:

* This code is part of an input routine which is to check

* if we have local currency at any side of FOREX deal

IF R.NEW(FX.CURRENCY.BOUGHT) EQ "USD" \
OR R.NEW(FX.CURRENCY.SOLD) EQ "USD" THEN

ETEXT = "NO LOCAL CURRENCY ALLOWED"

CALL STORE.END.ERROR

END

What’s wrong:

• Usage of local currency as a constant is not recommended, use global variable LCCY instead.

• CALL STORE.END.ERROR should be preceded by setting of AF variable to indicate the field where error

message appears. So it’s better to make it two IF statements -- one for currency bought and another for

currency sold.

136

Example 7:

SUBROUTINE SAMPLE7(PAR.RET.LIST, PAR.ERR.MSG)

* This subroutine does some processing and returns

* a list of values.

$INSERT I COMMON

$INSERT I EQUATE

GOSUB INIT

GOSUB PROCEED

RETURN

* Subroutines *

INIT:

FN.LD = "F.LD.LOANS.AND.DEPOSITS"

F.LD = ""

CALL OPF (FN.LD, F.LD)

FN.LC = "F.LETTER.OF.CREDIT"

F.LC = ""

CALL OPF(FN.LC, F.LC)

*FN.COMPANY = "F.COMPANY"

*F.COMPANY = ""

*CALL OPF(FN.COMPANY, F.COMPANY)

*CALL F.READ(FN.COMPANY, ID.COMPANY,

* R.COMPANY, F.COMPANY, LOC.ERR.MSG)

*IF LOC.ERR.MSG THEN RETURN

PROCEED:

* Do something - not relevant to our sample

RETURN

END

137

What’s wrong:

• Commented code complicates the view, remove it.

• There’s no RETURN statement in section INIT. It means that section PROCEED will be executed twice.

Example 8:

Local application, section DEFINE.PARAMETERS:

MAT F = "" ; MAT N = "" ; MAT T = ""

MAT CHECKFILE = "" ; MAT CONCATFILE = ""

ID.CHECKFILE = "" ; ID.CONCATFILE = ""

ID.F = ’ORG.TYPE.ID’ ; ID.N = ’250’ ; ID.T = ’A’

Z = 0

Z += 1 ; F(Z) = ’XX.LL.DESCRIPTION’

N(Z) = ’50’ ; T(Z) = ’ANY’

Z += 1 ; F(Z) = ’REPORTING.CODE’

N(Z) = ’3.1’ ; T(Z) = FM: ’-’

Z += 1 ; F(Z) = ’XX.ADDITIONAL.INFORM’

N(Z) = ’35’ ; T(Z) = ’A’

Z += 1 ; F(Z) = ’RESERVED.5’

N(Z) = ’35’ ; T(Z) = ’’ ; T(Z)<3> = ’NOINPUT’

Z += 1 ; F(Z) = ’RESERVED.4’

N(Z) = ’35’ ; T(Z) = ’’ ; T(Z)<3> = ’NOINPUT’

Z += 1 ; F(Z) = ’RESERVED.3’

N(Z) = ’35’ ; T(Z) = ’’ ; T(Z)<3> = ’NOINPUT’

Z += 1 ; F(Z) = ’RESERVED.2’

N(Z) = ’35’ ; T(Z) = ’’ ; T(Z)<3> = ’NOINPUT’

Z += 1 ; F(Z) = ’RESERVED.1’

N(Z) = ’35’ ; T(Z) = ’’ ; T(Z)<3> = ’NOINPUT’

V = Z

138

What’s wrong:

• ID length -- do we really need this much? There’s limit for Oracle which is 200, also we’ll have

difficulties with displaying ID which is that long.

• Field XX.ADDITIONAL.INFORM: name length exceeds 18 characters. Historically -- when terminal mode was

only used -- field name with bigger length corrupted the screen (and it still does). However, for Desktop

and Browser it doesn’t matter much. Still, I try to conform to that rule.

• As we can see, this is L-type application (‘‘V=Z’’ tells us so). So we don’t have audit trail and

therefore don’t need reserved fields. For applications that allow input it’s a good idea to provide reserved

noinput fields that later can be renamed and used to store data; in this case existing records don’t need to

be amended regarding the position of audit trail since it will remain the same.

Example 9:

* This is part of VERSION-level routine for TELLER

* application.

* Get the category of till account

FN.ACCOUNT = ’F.ACCOUNT’ ; F.ACCOUNT = ’’

CALL OPF(FN.ACCOUNT, F.ACCOUNT)

Y.ACCOUNT.NO = R.NEW(TT.TE.ACCOUNT.1)

CALL F.READ(FN.ACCOUNT,Y.ACCOUNT.NO,R.ACCOUNT,F.ACCOUNT,

LOC.NOT.FOUND)

IF LOC.NOT.FOUND EQ ’’ THEN

Y.ACC.CAT = R.ACCOUNT<AC.CATEGORY>

END

What’s wrong:

• For an internal account it’s much easier to get category number: simply extract characters 4 to 8 in its

id -- and you don’t need to read an account record.

139

Example 10:

* This piece of code tries to find a category code

* in multi-valued field of local parameter application.

* That field was read into variable Y.TT.PAR.

FOR I.TT.PAR = 1 TO DCOUNT(Y.TT.PAR, VM)

Y.TT.ACC.CAT = Y.TT.PAR<I.TT.PAR>

IF Y.ACC.CAT = Y.TT.ACC.CAT THEN

CAT.FOUNDED = 1

END

NEXT I.TT.PAR

What’s wrong:

• The number of values in a field will be calculated using DCOUNT at every iteration -- it can be done only

once and put into a variable.

• We are looking for a value, not for a field -- hence should use:

Y.TT.PAR<1, I.TT.PAR>

• It’s a good idea to use BREAK and thus to leave the loop when the given value is found.

• Or -- use FIND instead of this loop.

Example 11:

* LOC.ID.ACC is account ID which is somehow relevant

* to a record in another application that we’re in.

* This code gives an error when account record

* is not authorised.

* LOC.R.ACC is a record read from ACCOUNT$NAU file.

IF LOC.R.ACC<AC.RECORD.STATUS> EQ "INAU" THEN

E = ’ACCOUNT.&:.NAU.RECORD.EXISTS’:FM:LOC.ID.ACC

RETURN

END

What’s wrong:

• Status of unauthorised record might be not only INAU, but CNAU, RNAU, IHLD etc.

• Actually, if there’s a record in $NAU file, there’s no need to check its status -- we can raise the error

message at once.

140

Example 12:

* This code is part of VERSION-level routine.

*

IF (R.NEW(TT.TE.AMOUNT.LOCAL.1) EQ ’’) OR \
(R.NEW(TT.TE.AMOUNT.LOCAL.1) EQ 0) THEN

What’s wrong:

• Value of field is extracted from R.NEW twice.

• We can simply write:

IF NOT(R.NEW(TT.TE.AMOUNT.LOCAL.1))

Example 13:

* This code calculates local amount from amount

* in foreign currency

* and puts the result to appropriate local field.

LOC.FLAT.AMT = LOC.AMT.FCCY * LOC.CUR.EXH

R.NEW(LOCAL.REF.FIELD)<1,LCY.AMT.POSN> = LOC.FLAT.AMT

What’s wrong:

• Use EB.ROUND.AMOUNT T24 API subroutine to make amount not to look like, e.g., 9.999762.

Example 14:

IF ((LOC.R.REC<MM.CATEGORY> = 21025 \
OR LOC.R.REC<MM.CATEGORY> = 21026 \
OR LOC.R.REC<MM.CATEGORY> = 21027 \
OR LOC.R.REC<MM.CATEGORY> = 21028 \
OR LOC.R.REC<MM.CATEGORY> = 21029) AND \
(LOC.REPORT.TYPE = ’B’)) \
OR (LOC.REPORT.TYPE = ’P’) THEN

* Logic here

141

What’s wrong:

• Again, the field CATEGORY is to be extracted once and put to a variable for future use.

• Constants feel better being parameterised -- put it to an external application, either core or local one.

Example 15:

IF LEN(LOC.TT.ID) < 2 THEN LOC.TT.ID = ’000’ : LOC.TT.ID

IF LEN(LOC.TT.ID) < 3 THEN LOC.TT.ID = ’00’ : LOC.TT.ID

IF LEN(LOC.TT.ID) < 4 THEN LOC.TT.ID = ’0’ : LOC.TT.ID

What’s wrong:

• See FMT() Basic function.

(Here we see the code “that works”. I often hear “this code works, what’s
wrong?” form this or that developer. My point is that even if it works, it
shows the lack of knowledge – or lack of desire to learn. What if LOC.TT.ID
was up to 100 characters in length?)

Example 16:

Y.SEL = ’SELECT FBNK.ACCOUNT WITH ALT.ACCT.ID EQ ’:ID.ACC

What’s wrong:

• Use OPF to get full file name instead of hard-coding ‘‘FBNK’’ prefix.

• No need for this SELECT at all -- we have concat file ALTERNATE.ACCOUNT.

About concat files: this is analog of indexing (supported at T24 appli-
cation level). Personally, I prefer them to jBASE indexing. Links to concat
files are programmed in application code (see somewhat misty explanations
in I RULES) or being set up using core application EB.ALTERNATE.KEY.

142

31 I-descriptors

N ow we are a bit back into enquiry-related programming. Actually

there is another place where we can program to make things easier in enquiry
processing. It’s called I-descriptors.

It doesn’t mean that I-descriptors require programming in all cases.
There are simple things that do not. Remember when we used EVAL clause
in a SELECT?

jsh mb10 ~-->LIST FBNK.ACCOUNT$HIS EVAL

"FIELD(@ID,’;’,2)" ←↩

We van create an I-descriptor that returns the second part of ID. To
do it in non-T24 world one would use dictionary. In T24 we have to use
STANDARD.SELECTION application. Enter SS record, go directly to the
field 15.1 by typing its number, then type < ←↩ to expand the MV block
and enter the following:

R10 Model Bank STANDARD SELECTION FIELDS, INPUT

FILE.NAME....... ACCOUNT

--

15. 1 USR.FIELD.NAME. I.SECOND.PART

16. 1 USR.TYPE....... I

17. 1. 1 USR.FIELD.NO @ID[’;’,2,1]

18. 1. 1 USR.VAL.PROG

19. 1 USR.CONVERSION.

20. 1 USR.DISPLAY.FMT 2L

21. 1 USR.ALT.INDEX..

22. 1. 1 USR.IDX.FILE

23. 1 USR.INDEX.NULLS

24. 1 USR.SINGLE.MULT S

25. 1 USR.LANG.FIELD. N

143

Now commit the record, see multiple messages “I-descriptor is incom-
patible with” something (TAFJ, I suspect), ignore them all, return into jsh

prompt. Let’s see the corresponding dictionary entry:

jsh mb10 ~-->CT DICT FBNK.ACCOUNT I.SECOND.PART ←↩

I.SECOND.PART

001 I

002 @ID[’;’,2,1]

003

004 I.SECOND.PART

005 2L

006 S

007

008

009

010

011

012

013

014 @ID[’;’,2,1]

We can now use this field in SELECT, LIST etc:

jsh mb10 ~-->LIST FBNK.ACCOUNT$HIS I.SECOND.PART ←↩

@ID................ I.SECOND.PART

38288;10 10

17736;1 1

38008;17 17

38008;21 21

38288;5 5

38008;5 5

USD112100001;1 1

38296;9 9

144

You might ask: we already have EVAL to achieve that. But I-desriptor
can be used as a selection criteria for an enquiry, as an enquiry fixed selection.
Now let’s try to create an I-descriptor with local routine attached to it. As
an example, we can create I-descriptor that returns 1 if the record in question
was created by current user and 0 if it was somebody else:

0001 SUBROUTINE IDESC.TEST(P.RET, P.INPUTTER)

0002 *--

0003 * This routine returns 1 if the record was input

0004 * by current user, otherwise it returns 0.

0005 * Type of routine: I-descriptor.

0006 *--

0007 $INSERT I COMMON

0008 $INSERT I EQUATE

0009

0010 P.RET = 0

0011

0012 IF FIELD(P.INPUTTER, ’ ’, 2) EQ OPERATOR THEN

0013 P.RET = 1

0014 END

0015

0016 RETURN

0017 END

0018

Note that the 1st parameter is an output one. All others are input ones.
Normally we pass some field or fields to such routine to proceed. See how
it’s attached to STANDARD.SELECTION:

145

R10 Model Bank STANDARD SELECTION FIELDS, INPUT

FILE.NAME....... FUNDS.TRANSFER

--

15. 1 USR.FIELD.NAME. I.MY.RECORD

16. 1 USR.TYPE....... I

17. 1. 1 USR.FIELD.NO SUBR(’IDESC.TEST’,INPUTTER)

18. 1. 1 USR.VAL.PROG

19. 1 USR.CONVERSION.

20. 1 USR.DISPLAY.FMT 1L

21. 1 USR.ALT.INDEX..

22. 1. 1 USR.IDX.FILE

23. 1 USR.INDEX.NULLS

24. 1 USR.SINGLE.MULT S

25. 1 USR.LANG.FIELD. N

Try yourself to create an enquiry which uses this I-descriptor.

One more note: you might find fields with type“J” in SS records. They
are so-called “J-descriptors” though there’s no such term in jBASE itself.
They are simply I-descriptors which call a standard routine to fetch a field
from another application, e.g.:

R10 Model Bank STANDARD SELECTION FIELDS, INPUT

FILE.NAME....... ACCOUNT

--

1. 9 SYS.FIELD.NAME. SECTOR

2. 9 SYS.TYPE....... J

3. 9. 1 SYS.FIELD.NO CUSTOMER.NO>CUSTOMER>SECTOR

Let’s see dictionary entry for it:

146

jsh mb10 ~-->CT DICT FBNK.ACCOUNT SECTOR ←↩

SECTOR

001 I

002 CUSTOMER.NO; SUBR("ENQ.TRANS","CUSTOMER", @1, "SECTOR")

003

004 SECTOR

005 4R

006 S

007

008

009

010

011

012

013

014 CUSTOMER.NO; SUBR("ENQ.TRANS","CUSTOMER", @1, "SECTOR")

The syntax in SS record is quite evident so if you need something like
that it’s easy.

32 COB programming

COB stands for “close of business” when the current work day is over

and a sequence of “jobs” is being run to produce such things as daily reports,
account accruals etc. The COB programming idea in T24 is that you need
to write so-called “multi-threaded” routines to be run during COB. Actually
it has nothing to do with threading – it’s just possibility for several sessions
to simultaneously proceed the task given. As a result, performance gain is
achieved – even if you run 2-3 “threads” (also called “agents”) on a dual-core
PC processor.

Again, terminology might be a bit confusing. “COB agents” have noth-
ing to do with “jBASE” agent which is used for Browser T24 client. COB
agents are launched using tSM and tSA programs from jsh prompt. There is

147

“phantom” mode and “debug” mode; I’d recommend to use the former only
when everything is absolutely stable (which is near to impossible in real life).

See T24 manuals for more info; here I’d like only to produce a very simple
example of COB job (or at least I believe that it will remain simple).

What we should not forget when we write routines for COB job?

• That NS (“Non-stop” module) might be installed and new transac-
tions may be input during COB.

• Even if it’s not – that users are able to login to see records.

• That F.WRITE doesn’t cache writes (and issues immediate WRITEs) so
no need in calling JOURNAL.UPDATE.

• That parallel agent sessions shouldn’t be locking the same record,
otherwise the performance gain goes down the drain.

• That in multi-company environment COB batches (and therefore jobs)
are run separately for each company so you need to decide whether to run
your job for each company or the architecture of your solution assumes that
you need to run it only once.

• That all area might be restored after serious crash so if you have some
work files – put them to bnk.data rather than keep in bnk.run like some
people often do. And – in case of outward interfaces – take care about output
files so the information wouldn’t be duplicated.

One note for JOURNAL.UPDATE: it’s a core subroutine that is not described
in manuals but is sometimes necessary in local code. When you work inside
T24 transaction boundary (e.g. in a VERSION routine) you don’t need
it. Moreover, if you use it there you might ruin everything. Like: you use
F.WRITE to some local application or work file to reflect something from
current transaction, then use JOURNAL.UPDATE, then user rejects the main
transaction but your supplementary data is already committed (as well as
some pending writes already made by the core).

148

You can use JOURNAL.UPDATE in a “mainline” routine and in a rou-
tine that is invoked upon “V”-function in “W”-type application (in latter
case when such routine is being invoked the main T24 transaction is al-
ready finished). If you don’t use JOURNAL.UPDATE in that 2 cases – all
changed that were done using F.WRITE or F.DELETE will not be saved. Some-
times you need to issue JOURNAL.UPDATE after certain number of F.WRITEs
– otherwise T24 write cache will be exhausted and you’ll get fatal error
like “** FATAL ERROR IN (I IO.ROUTINES) ** FILE I/O CACHE EXCEEDS

nnnn RECORDS”. By the way, if you get this message in T24 core and “nnnn”
is equal to 9999, write to Temenos Helpdesk immediately (9999 is the maxi-
mum cache size that can be specified in SPF).

OK, back to COB example. Let’s program a simple COB report. It will
be based on ACCOUNT application. Why can’t we use an enquiry to output
all we need? Well, in our Model Bank ACCOUNT is not very big but in real
life it might be; and enquiry can be prepared by only one of agents and we’re
talking about performance here.

What we need is one insert file (I TEST.REP.COMMON):

0001 *--

0002 *

0003 * [Author], [date]

0004 *

0005 * Defines named common area which holds all initialized

0006 * variables for use by the job.

0007 *--

0008 *

0009 * Modifications :

0010 *

0011 * DD/MM/YYYY, [author] - [details of change]

0012 *--

0013

0014 COM /TEST.REP.COM/ FN$TEST.REP.OUTPUT,

0015 F$TEST.REP.OUTPUT,

0016 FN$ACCOUNT,

0017 F$ACCOUNT

149

...and 4 routines. I’ll describe them in the order of their processing.

Name prefix (TEST.REP) should be the same for 3 following routines.
Suffixes are: .SELECT, .LOAD and for so-called “record” routine there’s no
suffix.

0001 SUBROUTINE TEST.REP.SELECT

0002 *---

0003 * [Author], [date]

0004 *

0005 * Mandatory process to build the "key only" file that

the main processes will

0006 * handle. That file contains all the IDs which are to

be processed.

0007 *---

0008 *

0009 * Modifications :

0010 *

0011 * DD/MM/YYYY, [author] - [details of change]

0012 *---

0013 *

0014 $INSERT I COMMON

0015 $INSERT I EQUATE

0016 $INSERT I TEST.REP.COMMON

0017

Usual header. Note I TEST.REP.COMMON – it’s our common area that has
to be included to all but one source file.

0018 * Clear temporary file

0019

0020 CALL EB.CLEAR.FILE(FN$TEST.REP.OUTPUT,

F$TEST.REP.OUTPUT)

0021 PRINT FN$TEST.REP.OUTPUT :’ has been cleared’

0022

Self-explanatory stuff...

150

0023 * Main SELECT

0024

0025 V.SELECT.CMD = ’SELECT ’: FN$ACCOUNT

0026 V.SELECT.CMD := ’ WITH CATEGORY EQ 1001 1005 2001

3101 3102 3103 4001 5001’

0027 V.SELECT.CMD := ’ AND WORKING.BALANCE GT 0’

0028 V.SELECT.CMD := ’ BY CATEGORY’

0029 V.TEST.REP.LIST = ’’

0030 CALL EB.READLIST(V.SELECT.CMD, V.TEST.REP.LIST, ’’,

’’, ’’)

0031

Here we proceed with SELECT to prepare a list for processing.

0032 * Build "key only" file

0033

0034 CALL BATCH.BUILD.LIST(’’, V.TEST.REP.LIST)

0035

0036 RETURN

0037

0038 END

0039

Finally we pass this list to the core.

“Load” routine:

151

0001 SUBROUTINE TEST.REP.LOAD

0002 *---

0003 *

0004 * [Author], [date]

0005 *

0006 * This mandatory process is required to set up

0007 * the common area used by the process.

0008 *---

0009 *

0010 * Modifications :

0011 *

0012 * DD/MM/YYYY, [author] - [details of change]

0013 *---

0014 *

0015 $INSERT I COMMON

0016 $INSERT I EQUATE

0017 $INSERT I TEST.REP.COMMON

0018

0019 * Main

0020

0021 GOSUB OPEN.FILES

0022

0023 RETURN

0024

Nothing to comment so far...

152

0025 * Subroutines

0026

0027 *---

0028 OPEN.FILES:

0029

0030 * This hashed file contains all the report lines which

are to be sent out

0031

0032 FN$TEST.REP.OUTPUT = ’F.TEST.REP.OUTPUT’

0033 F$TEST.REP.OUTPUT = ’’

0034 CALL OPF(FN$TEST.REP.OUTPUT, F$TEST.REP.OUTPUT)

0035

0036 FN$ACCOUNT = ’F.ACCOUNT’

0037 F$ACCOUNT = ’’

0038 CALL OPF(FN$ACCOUNT, F$ACCOUNT)

0039

0040 *---

0041

0042 RETURN

0043

0044 END

0045

This routine is triggered before a “record” routine proceeds with an entry
from the list file (e.g. F.JOB.LIST.1) and sets up the necessary environment.

Now, “record” routine:

153

0001 SUBROUTINE TEST.REP(P.NEXT.ID)

0002 *--

0003 *

0004 * [Author], [date]

0005 *

0006 * This is the main program, will be invoked for every

0007 * ID in the list file, generated by the system at

0008 * .SELECT stage.

0009 *--

0010 *

0011 * Related programs for multi-threading are :

0012 * I TEST.REP.COMMON - common area (INSERT-file)

0013 * TEST.REP.LOAD - sets up the common area used by

0014 * all threads

0015 * TEST.REP.SELECT - builds the "key only" file

0016 * TEST.REP.OUT - next job, outputs the data from

0017 * hashed file to a flat file

0018 *--

0019 *

0020 * Modifications :

0021 *

0022 * DD/MM/YYYY, [author] - [details of change]

0023 *--

0024 *

0025 $INSERT I COMMON

0026 $INSERT I EQUATE

0027 $INSERT I TEST.REP.COMMON

0028 $INSERT I F.ACCOUNT

0029

154

0030 * Main

0031

0032 GOSUB PROCESSING

0033 GOSUB WRITE.TO.HASHED.FILE

0034

0035 RETURN

0036

0037 * Subroutines

0038

Quite usual main section...

0039 *--

0040 PROCESSING:

0041

0042 V.ERR = ’’

0043 CALL F.READ(FN$ACCOUNT, P.NEXT.ID, R.ACCOUNT,

F$ACCOUNT, V.ERR)

0044

0045 IF V.ERR THEN

0046 TEXT = ’ACCOUNT RECORD (&) COULD NOT BE READ’ :FM:

P.NEXT.ID

0047 CALL FATAL.ERROR(SYSTEM(40))

0048 END

0049

0050 V.LINE.OUT = P.NEXT.ID : ’ ’ : \
0051 R.ACCOUNT<AC.ACCOUNT.TITLE.1> : ’ ’ : \
0052 R.ACCOUNT<AC.CURRENCY> : ’ ’ : \
0053 FMT(R.ACCOUNT<AC.WORKING.BALANCE>, "19R")

0054

0055 RETURN

0056

Here we prepare the line which will be written to our report...

155

0057 *--

0058 WRITE.TO.HASHED.FILE:

0059

0060 * Writing, ID is the same as ACCOUNT ID

0061

0062 CALL F.WRITE(FN$TEST.REP.OUTPUT, P.NEXT.ID,

V.LINE.OUT)

0063

0064 RETURN

0065

0066 END

0067

...and here we write it to hashed file.

And – finally – the output routine that will grab all info from a hashed
file and then output it to a flat file:

0001 SUBROUTINE TEST.REP.OUT

0002 *---

0003 * [Author], [date]

0004 *

0005 * Process to output the data stored in the

0006 * F[xxx].TEST.REP.OUTPUT file to a text file

0007 * after all multi-threading has finished.

0008 *---

0009 *

0010 * Modifications :

0011 *

0012 * DD/MM/YYYY, [author] - [details of change]

0013 *---

0014 *

0015 $INSERT I COMMON

0016 $INSERT I EQUATE

0017

156

0018 GOSUB INITIALIZATION

0019

0020 * This hashed file contains all the report lines which

are to be sent out.

0021 * Select all records sorted by deal reference

0022

0023 V.SELECT.CMD = ’SSELECT ’: FN.TEST.REP.OUTPUT

0024 V.LIST = ’’

0025 CALL EB.READLIST(V.SELECT.CMD, V.LIST, ’’, V.QTY, ’’)

0026

0027 IF NOT(V.LIST) THEN RETURN

0028

0029 * Create output file in the temporary directory

0030

0031 OPENSEQ V.TEMP.DIR, V.OUT.FILE.NAME TO F.TEMP.FILE

THEN

0032 WEOFSEQ F.TEMP.FILE

0033 END ELSE

0034 CREATE F.TEMP.FILE ELSE

0035 TEXT = ’OUTPUT FILE CREATION ERROR’

0036 CALL FATAL.ERROR(SYSTEM(40))

0037 END

0038 END

0039

157

0040 FOR V.I = 1 TO V.QTY

0041

0042 V.ID = V.LIST<V.I>

0043 V.LINE = ’’

0044 V.ERROR = ’’

0045 CALL F.READ(FN.TEST.REP.OUTPUT, V.ID, V.LINE,

F.TEST.REP.OUTPUT, V.ERROR)

0046

0047 IF V.ERROR THEN

0048 TEXT = ’INPUT FILE - READ ERROR’

0049 CALL FATAL.ERROR(SYSTEM(40))

0050 END

0051

0052 WRITESEQ V.LINE TO F.TEMP.FILE ELSE

0053 TEXT = ’OUTPUT FILE - WRITE ERROR’

0054 CALL FATAL.ERROR(SYSTEM(40))

0055 END

0056

0057 NEXT V.I

0058

0059 CLOSESEQ F.TEMP.FILE

0060

0061 * Move file to interface directory

0062

0063 IF SYSTEM(1017)[1,3] EQ ’WIN’ THEN

0064 V.CMD = "DOS /c ’MOVE /Y " :

’"’:V.TEMP.DIR:’\’:V.OUT.FILE.NAME :’" "’: V.OUT.DIR

:’"’:"’"

0065 END ELSE

0066 V.CMD = "SH -c ’mv -f " :’"’:V.TEMP.DIR :

’/’:V.OUT.FILE.NAME :’" "’: V.OUT.DIR :’"’:"’"

0067 END

0068

0069 EXECUTE V.CMD

0070

0071 RETURN

0072

158

0073 * Subroutines

0074

0075 *---

0076 INITIALIZATION:

0077

0078 V.TEMP.DIR = ’&TEMP&’

0079

0080 * Open files

0081

0082 FN.TEST.REP.OUTPUT = ’F.TEST.REP.OUTPUT’

0083 F.TEST.REP.OUTPUT = ’’

0084 CALL OPF(FN.TEST.REP.OUTPUT, F.TEST.REP.OUTPUT)

0085

0086 * Compose output file name

0087

0088 V.TIME.NOW = OCONV(TIME(), ’MTS’)

0089 CONVERT ’:’ TO ’.’ IN V.TIME.NOW

0090 V.DATE.NOW = FMT(TODAY, ’R####.##.##’)

0091 V.OUT.FILE.NAME = ’TEST REP ’: V.DATE.NOW : ’ ’ :

V.TIME.NOW

0092

0093 V.OUT.DIR = ’../bnk.interface’

0094

0095 RETURN

0096

0097 END

0098

Hope that comments in the code are quite clear.

Now we need to set up some records:

159

R10 Model Bank PROGRAM FILE, INPUT

PROGRAM TEST.REP

--

1 TYPE.............. B

2. 1 GB SCREEN.TITLE MULTI-THREADED REPORT

3 ADDITIONAL.INFO...

4. 1 BATCH.JOB......

5 PRODUCT........... EB

R10 Model Bank PROGRAM FILE, INPUT

PROGRAM TEST.REP.OUT

--

1 TYPE.............. B

2. 1 GB SCREEN.TITLE TEST.REP REPORT OUTPUT

3 ADDITIONAL.INFO... R

4. 1 BATCH.JOB..... TEST.REP.OUT

5 PRODUCT........... EB

You see that the field batch.job is not populated in TEST.REP record.
This (or the value @BATCH.JOB.CONTROL) means that it’s standard multi-
threaded job. TEST.REP.OUT is not multi-threaded since we’re going to write
to a flat file there which normally requires a single session.

160

R10 Model Bank BATCH ENTRY, INPUT

BATCH PROCESS BNK/TEST.REP

--

1 BATCH.STAGE.......

2 DEFAULT.PRINTER...

3 PROCESS.STATUS....

4 BATCH.ENVIRONMENT. F

5 DEPARTMENT.CODE...

6. 1 JOB.NAME....... TEST.REP MULTI-THREADED REPORT

7. 1. 1 VERIFICATION

8. 1 FREQUENCY...... D

...

6. 2 JOB.NAME....... TEST.REP.OUT TEST.REP REPORT OUTPUT

7. 2. 1 VERIFICATION TEST.REP MULTI-THREADED REPORT

8. 2 FREQUENCY...... D

We leave the field batch.stage empty intentionally to be able firstly
to test our functionality as an online service without the need to run COB
(which might be not an easy task on Model Bank – usually there are numerous
problems with core jobs that wouldn’t be easy for you to overcome).

As soon as testing finishes, field batch.stage is to be populated with
something like R001 to make it run at “Reporting” COB stage. Then the
BATCH record is to be repeated for every company that has its own AC-
COUNT file (so ids will be sg1/test.rep, eu1/test.rep and mf1/test.rep).
Companies MF2 and MF3 share ACCOUNT file with company MF1. We can
see it here:

161

jsh mb10 ~-->LIST F.COMPANY MNEMONIC FINANCIAL.MNE ←↩

@ID........ MNEMONIC FINANCIAL.MNE

SG0010001 SG1 SG1

GB0010003 MF2 MF1

EU0010001 EU1 EU1

GB0010002 MF1 MF1

GB0010004 MF3 MF1

GB0010001 BNK BNK

To be able to run our task as an online service we need to create the
following records:

R10 Model Bank TSA.WORKLOAD.PROFILE, INPUT

WORKLOAD.PROFILE TEST.REP

--

1 DESCRIPTION....... FOR TEST REPORT

2. 1 TIME...........

3. 1 AGENTS.REQUIRED 2

Record id can be any (or you can use any other record that has the
number of agents the same as you need... for example, TWO... no, it has 4
agents... never trust a name...). And:

R10 Model Bank TSA.SERVICE, INPUT

SERVICE BNK/TEST.REP

--

1. 1 DESCRIPTION.... TEST REPORT ONLINE

2. 1 SERVER.NAME....

3. 1 WORK.PROFILE... TEST.REP FOR TEST REPORT

4. 1 SERVER.STATUS..

5 USER............... INPUTTER INPUTTER

6 SERVICE.CONTROL...

162

Again, id can be any. To start our testing (I assume that routines are
already compiled) put the value START into field service.control both in
our new record and in the record TSM. Then open another Telnet session so
we have 2 of them. In one of them at jsh prompt type START.TSM -DEBUG

(yes, that’s DEBUG mode) and see what’s there on the screen:

...

Manually launch tSA 14 SMS.OUT

Manually launch tSA 15 SMS.OUT

Manually launch tSA 16 BNK/TEST.REP

Manually launch tSA 17 BNK/TEST.REP

...

In the other session at jsh prompt type:

jsh mb10 ~-->tSA 16 ←↩

...

BNK/TEST.REP TEST.REP 16 23 SEP 2010 12:15:50 Standard

multi-thread job

BNK/TEST.REP TEST.REP 16 23 SEP 2010 12:15:50 Calling load

routine

BNK/TEST.REP TEST.REP 16 23 SEP 2010 12:15:50 Fatal error

in OPF error NO FILE.CONTROL RECORD - F.TEST.REP.OUTPUT ,

MNEMONIC =

...

jsh mb10 ~-->

Yes, we’ve forgotten to create a work file. I used this situation to show
how FATAL.ERROR works. It gives an error message, in addition there’s an
application EB.EOD.ERROR where we can see it:

163

R10 Model Bank EB.EOD.ERROR SEE

EB.EOD.ERROR.ID... GB0010001.20100105

--

1. 1 TIME.DATE...... 12:15:50 23 SEP 2010

2. 1. 1 DESCRIPTION. NO FILE.CONTROL RECORD -

F.TEST.REP.OUTPUT , MNEMONIC =

3. 1 APPLICATION.ID. BNK/TEST.REP-TEST.REP

4. 1 ROUTINE........ OPF

6. 1. 1 DETAIL.KEY.. 156070180444150.00

8. 1 FIX.REQUIRED... YES

23. 1 INPUTTER....... OPF

24. 1 DATE.TIME...... 23 SEP 2010 12:15

25 AUTHORISER........ FATAL.ERROR

26 CO.CODE........... GB-001-0001 R10 Model Bank

If fatal error happens during COB our reaction depends on the situation.
If the error was raised by some record processing that doesn’t touch other
records (e.g. problems with particular contract) – we can in most cases
continue and take care about that particular record later. There could be
cases when we’ll have to restore pre-COB backup and run COB again (which
is of course the last thing that is considered). In case of any doubt contact
Temenos Helpdesk.

Here we’re going to create the necessary file and try again. We don’t
even need to stop tSM.

A work file that we need can easily be created. Despite the fact that
Temenos standards require a template to be written for every data file, we
really don’t need it. We still need FILE.CONTROL records so the file can
be opened with OPF. And – FILE.CONTROL record will be useful for de-
ployment of all development to another area via DL.DEFINE (since when
we restore FILE.CONTROL record, data file will be creatred automatically).
And we need this file to be FIN because ACCOUNT is.

We had already created FILE.CONTROL record for local application
FT.CREATION.METHOD. So:

164

jsh mb10 ~-->COPY FROM F.FILE.CONTROL

FT.CREATION.METHOD,TEST.REP.OUTPUT ←↩

1 records copied

Then it makes sense to correct fields 1 and 2 with file decription and
EB accordingly (“EB” stands for “core” – there’s no product code for local
developments). Then the procedure already known to you – CREATE.FILES.
Then – input START to TSA.SERVICE record BNK/TEST.REP. After some
time tSM screen assigns the number for our agent:

...

Manually launch tSA 16 BNK/TEST.REP

Manually launch tSA 17 BNK/TEST.REP

Let’s try number 17 now:

...

FBNK.TEST.REP.OUTPUT has been cleared

BNK/TEST.REP TEST.REP 17 23 SEP 2010 13:05:55 SELECT

FBNK.ACCOUNT WITH CATEGORY EQ 1001 1005 2001 3101 3102 3103

4001 5001 AND WORKING.BALANCE GT 0 BY CATEGORY Selected=215

time=1secs

BNK/TEST.REP TEST.REP 17 23 SEP 2010 13:05:55 List starting

from 0 keys processed so far 0

BNK/TEST.REP TEST.REP 17 23 SEP 2010 13:05:55 Building from

list passed

BNK/TEST.REP TEST.REP 17 23 SEP 2010 13:05:55 Control list..

BNK/TEST.REP TEST.REP 17 23 SEP 2010 13:05:55 Using list file

F.JOB.LIST.1

BNK/TEST.REP TEST.REP 17 23 SEP 2010 13:05:55 Control list

processing 112 215

BNK/TEST.REP TEST.REP 17 23 SEP 2010 13:05:55 SELECT

F.JOB.LIST.1 SAMPLE 100000 Selected=101 time=0secs

BNK/TEST.REP TEST.REP 17 23 SEP 2010 13:05:55 SELECT

F.JOB.LIST.1 SAMPLE 100000 Selected=91 time=0secs

...

165

...

BNK/TEST.REP TEST.REP 17 23 SEP 2010 13:05:55 SELECT

F.JOB.LIST.1 SAMPLE 100000 Selected=17 time=0secs

BNK/TEST.REP TEST.REP 17 23 SEP 2010 13:05:55 SELECT

F.JOB.LIST.1 SAMPLE 100000 Selected=0 time=0secs

</job>

<job name = TEST.REP.OUT>

BNK/TEST.REP TEST.REP.OUT 17 23 SEP 2010 13:05:55 Single

Thread routine TEST.REP.OUT

BNK/TEST.REP TEST.REP.OUT 17 23 SEP 2010 13:05:55 Starting

job

BNK/TEST.REP TEST.REP.OUT 17 23 SEP 2010 13:05:55 Allocating

List File for BNK/TEST.REP-TEST.REP.OUT-2

BNK/TEST.REP TEST.REP.OUT 17 23 SEP 2010 13:05:55 Updating

the Locking with BNK/TEST.REP-TEST.REP.OUT-2 and

F.JOB.LIST.1

BNK/TEST.REP TEST.REP.OUT 17 23 SEP 2010 13:05:55 Using list

file F.JOB.LIST.1

BNK/TEST.REP TEST.REP.OUT 17 23 SEP 2010 13:05:55 Control

list processing 1 1

BNK/TEST.REP TEST.REP.OUT 17 23 SEP 2010 13:05:55 SSELECT

FBNK.TEST.REP.OUTPUT Selected=215 time=0secs

BNK/TEST.REP TEST.REP.OUT 17 23 SEP 2010 13:06:09 SELECT

F.JOB.LIST.1 SAMPLE 100000 Selected=0 time=0secs

</job>

</process>

</service>

Agent stopped

You also have all this output in a file in &COMO& subdirectory of bnk.run.
And – see report file:

166

jsh mb10 ~-->SELECT ../bnk.interface LIKE TEST... ←↩

1 Records selected

> CT ../bnk.interface ←↩

TEST REP 2010.01.05 13.05.55

001 10499 WILLIAM GATES USD 9382000

002 10596 TED TURNER USD 7582.19

003 10693 MICHAEL DELL USD 88452734.12

004 10707 MICHAEL DELL CHF 11710

005 10812 JAY WALKER EUR 28440.62

006 10944 Warner Buffet USD USD 79981.66

007 10968 Warner Buffet EUR EUR 15730.22

008 11018 COCA-COLA EUR 2618274.11

009 11029 COCA-COLA GBP 6011527.99

010 11096 Delta Caroline USD USD 295177.78

...

Or see it in your favourite viewer/editor.

33 Linux

T here’s a lot of places where you can insert your hooks in T24 – delivery

(very large topic), accounting hook, charges/commissions hook... It will take
a lot of time to describe it all. Maybe in Volume 2 I’ll do that... But for
time being I’m in a situation of having Windows 7 home at my laptop and
there are certain difficulties in running jBASE (shared memory initialisation
even if I run jsh from Admin account). So I’ve decided to go to a chapter
that was intended to be covered much later. It’s: T24 under Linux.

Which Linux distribution to take? I know that Redhat is the only one
officially supported by Temenos and there’s CentOS 5 which is the closest
one to Redhat. But (I afraid I might be criticized here) my Linux of choice
is Ubuntu.

167

Firstly we need to get 64-bit distribution iso file. It’s quite easy – you
can download it at ununtu.org. I understand that installation of OS that
might be new to you along with your current one is quite a stress, so I’d
suggest to install Ubuntu to a virtual machine.

Be sure you have Model Bank and TAFC for Linux (the latter equiped
with valid license key) before you start.

In my example I’ll use VmWare player 3.1.0 and downloaded image file
ubuntu-10.10-desktop-amd64.iso. Start the Player, choose option ”Cre-
ate a New Virtual Machine”, choose option ”Installer disc image file (iso)”,
find your file, click ”Next”, input your name etc. Inportant is the user name
– you’ll have to put all your files into the directory /home/user name. I’ll
make it t24 to make things easier.

Everything else you can leave by default. When VM is created, put
jBASE distribution to directory /home/t24 and extract it in terminal:

t24@ubuntu:~$ gzip -cd TAFC R10 GA Linux.tar.gz | tar -xvf -

←↩

If you’re not able to copy/paste between your host and guest OS – use
USB flash drive to transfer files.

Extraction of TAFC package will create subdirectory R10 which I’d better
rename to tafc. Then – extract Model Bank using the same command as
above. You’ll have then bnk subdirectory.

In terminal window change the directory to tafc/config, then type:
sudo gedit system.properties. Put your jBASE licence code at the very
end of this file. Save it.

Then go to /home/t24/bnk/bnk.run directory, edit .profile. Put there
TAFC HOME as /home/temenos/tafc. Now you’re almost ready to run T24
in classic mode.

168

To do that (at least to try) type in terminal (assuming that you’re in
bnk.run directory):

t24@ubuntu:~/bnk/bnk.run$./.profile ←↩

/home/t24/tafc/bin/jpqn: error while loading shared

libraries: libcrypto.so.6 etc...

How to correct that:

t24@ubuntu:~/bnk/bnk.run$ sudo ln -s

/usr/lib/libcrypto.so.0.9.8 /usr/lib/libcrypto.so.6 ←↩

Anticipating another error, it’s a good idea to run the following command
as well:

t24@ubuntu:~/bnk/bnk.run$ sudo ln -s

/usr/lib/libssl.so.0.9.8 /usr/lib/libssl.so.6 ←↩

Finally:

t24@ubuntu:~/bnk/bnk.run$./.profile ←↩
START GLOBUS Y/N ←↩

%

[417] File /home/t24/tafc/tmp/jutil ctrl]D created, type =

J4

[417] File /home/t24/tafc/tmp/jutil ctrl created, type =

J4

jsh t24 ~-->

We are now able to login to T24. Keep in mind that function keys
mapping doesn’t work here so use Ctrl -U ←↩ etc.

If we need to compile Basic sources (of course we do), we need also to

169

install open ksh (press Ctrl -D first to return to bash):

t24@ubuntu:~/bnk/bnk.run$ sudo apt-get install ksh ←↩

(Thanks to people from jBASE Google group for that hint. Before getting
it I’ve simply linked sh to ksh which indeed wasn’t very wise.)

In case of problems firstly run the command ‘‘sudo apt-get update’’.

If – when cataloging your routine – you get the error message “cannot
find -lncurses” – install the following packages:

t24@ubuntu:~/bnk/bnk.run$ sudo apt-get install libncurses5

libncurses5-dev ←↩

After that you get quite working T24 system. If you’re going to run
COBs there. don’t forget to increase number of opened files for your user in
/etc/security/limits.conf:

t24 hard nofile 4096

t24 soft nofile 4096

If you wish, you can then install java and jBoss but let’s try to log in to
this system from the host OS, i.e. Windows.

Firstly get IP address of the virtual machine (command ifconfig). Then
– use some SSH client (e.g. PuTTY) to connect to this address. Before doing
that, you need to install:

t24@ubuntu:~/bnk/bnk.run$ sudo apt-get install

openssh-server ←↩

If packages names change at the time when you’re trying to do that –
simply type sshd at terminal prompt and it will tell you what to do.

170

Connect via PuTTY, say “yes” to certificate-related message, then –
login as t24 with your Ubuntu password. We are now at the home directory,
to launch T24 we need to change our current directory to bnk/bnk.run and
then type ./.profile.

We’ll leave this virtual machine as it is and use it as a server. The only
thing we need for it to be a server – the jBASE agent to be run there. Simply
copy .profile to jbase agent.sh and amend the last line the following way:

$TAFC HOME/bin/jbase agent

Then – run it in a terminal:

t24@ubuntu:~/bnk/bnk.run$./.jbase agent.sh ←↩
(4915|140158758917920) NOTICE starting up jAgent,

Process Per Connection mode, listening on port 20002,

SocketAcceptor.h +107

Now you can set up your Windows jBoss to connect to this agent. To
do this just change host and port in t24-ds.xml (see above in “Browser
client...” chapter).

But the thing which might be much more interesting for you is awaiting
us – Java/jRemote.

34 Java and jRemote

T o be honest with you, I’m not a big fan of Java. The purpose of this

chapter is to show the possibilities that you have; to use or not to use them
is up to you.

We’ll use Linux virtual machine with running jbase agent as a server
and Windows as a client.

171

We can use our Java SDK 1.6 for it.

Create a new directory in Windows space and put there the following
files:

CallSysCall.java, contents (please note that lines are quite long and
might wrap; check semicolons for line ends):

// JCA outbound example (Java)

//

// Author: Alexander Demin (ademin@temenos.com)

// small changes KZM

// Copyright: Temenos 2009

import com.jbase.jremote.DefaultJConnectionFactory;

import com.jbase.jremote.JConnection;

import com.jbase.jremote.JConnectionFactory;

import com.jbase.jremote.JDynArray;

import com.jbase.jremote.JRemoteException;

import com.jbase.jremote.JExecuteResults;

import java.util.Properties;

import java.io.ByteArrayOutputStream;

import java.io.OutputStreamWriter;

import java.io.Writer;

import java.io.UnsupportedEncodingException;

public class CallSysCall {

private JConnectionFactory factory = null;

public CallSysCall(JConnectionFactory f) {
factory = f;

}
...

172

...

public void perform(String cmd) {
try {

Properties prop = new Properties();

prop.setProperty("allow input", "true");

JConnection c = factory.getConnection(null, null, prop);

ByteArrayOutputStream bos = new ByteArrayOutputStream();

Writer writer = new OutputStreamWriter(bos, "UTF-8");

c.setTerminalOutputWriter(writer);

JExecuteResults results = c.execute(cmd);

if (results != null) {

JDynArray resarray = new JDynArray();

resarray = results.getCapturingVar();

int nattr = resarray.getNumberOfAttributes();

for(int a = 1; a <= nattr; a++)

{
System.out.println(resarray.get(a));

}
}

c.close();

} catch (UnsupportedEncodingException e) {
System.out.println("Error creating OutputStreamWriter.");

} catch (JRemoteException e) {
e.printStackTrace();

}
}

...

173

...

public static void main(String[] args) {
DefaultJConnectionFactory factory = new

DefaultJConnectionFactory();

// optional host

String host = "127.0.0.1";

if (args != null && args.length > 0) {
host = args[0];

}
factory.setHost(host);

// optional port

int port = 9494;

if (args != null && args.length > 1) {
port = Integer.valueOf(args[1]);

}
factory.setPort(port);

String extcmd = "jdiag";

if (args != null && args.length > 2) {
extcmd = args[2];

}

CallSysCall example = new CallSysCall(factory);

example.perform(extcmd);

}
}

Now we need to compile it. Put the following commands to cmd file and
run it:

set PATH=c:\temenos\jdk1.6.0 17\bin;%PATH%
set CLASSPATH=.\jremote.jar;%CLASSPATH%
javac CallSysCall.java

Of course firstly copy to current directory file jremote.jar from TAFC
subdirectory java\lib or refer to it using the full path.

Execute java class using cmd file with following contents:

174

set PATH=c:\temenos\jdk1.6.0 17\bin;%PATH%
set CLASSPATH=.\jremote.jar;%CLASSPATH%
java CallSysCall 192.168.111.132 20002 "WHERE"

Result:

[H[2J Port Device Account PID Command

*1000 3 t24 4964 jbase agent

WHERE

You can amend the command to, say, ‘‘LIST F.SPF’’. The result will
be the same as you expected it to be:

@ID.................. SYSTEM

@ID.................. SYSTEM

SYSTEM.SPEC.......... SYSTEM

RUN.DATE............. 20100120

SITE.NAME............ R10 Model Bank

OP.MODE.............. O

OP.CONSOLE...........

MAIN.ACCOUNT......... ../bnk.data

BACKUP.CYCLE.1.......

BACKUP.CYCLE.2.......

CURRENT.RELEASE...... R10.000

HIST.LIFE............ 1

ALL.PG.INC...........

CACHE.EXPIRY.........

ENQ.PAGE.LIMIT....... 200

RECV.DATE.TIME.......

SYS.BACKUP.MODE...... TAPE

HOLD.BATCH.OUTPUT.... Y

MICROFICHE.OUTPUT.... N

...

You can also call a Basic function using jRemote, open and read jBASE
file. (And write too but be very careful!)

175

To make things look nicer I even went as far as to download Java servlet
example and to make the output of jRemote appear in web browser window.
I’ve used jBoss to deploy this servlet. See screenshots:

Request:

Result:

176

Request:

Result:

177

Request:

178

Result:

179

To be able to run OFS request I’ve written a short Basic subroutine.
Couldn’t resist to put at least one Linux screenshot here:

180

On that point my playing with Java had so far ended.

35 Conclusions

Having read all that you might ask – does T24 really work? It looks like it
requires a lot of tampering and care? The answer to both these questions is
Yes. Yes, it requires a lot of labour to get the system do what you need but
once you’ve done it works. At least until the next upgrade.

Hope this book helped you to understand not only what’s inside the system,
but also how to approach it without fear.

181

Enjoy!

THE END of book 1.

To be continued.

c©2010 Vladimir Kazimirchik.

Written in LATEXusing TexLIVE 2010.

182

	Preface
	Model Bank – installation
	Does it work straight away?
	What's next?
	Shortcuts, applications basics
	Application data, LIVE and NAU files, record status, audit trail, LIST basics, INT applications
	FIN and CUS applications, history file, ``F'' VOC entries, COMPANY, EVAL in LIST
	SELECT and SELECT lists, COUNT, ``SAVING'' and ``UNIQUE'' in SELECT
	More navigation in Classic
	Introduction into programs and subroutines, conclusion for applications
	Introduction into OFS, more about functions, setup OFS.SOURCE, tSS, simple enquiry output
	OFS – inputting an application record: VERSION creation, ``VALIDATE'' option, couple of tests, STANDARD.SELECTION check
	Writing a simple T24 subroutine
	Getting application information from a routine
	OFS – application record creation – continued, overrides, fields GTS.CONTROL and NO.OF.AUTH
	VERSION routines – AUT.NEW.CONTENT, R.NEW, application insert file
	OFS.REQUEST.DETAIL
	Manual transaction input in comparison with OFS, GTSACTIVE variable
	Browser client – jboss, jBASE agent, logging in
	Transaction input under Browser, debugging
	TODAY variable, date format in T24, edit mode in Classic, API for dates manipulation
	Global variables again – their lifetime, writing a PROGRAM, CRT
	CHECK.REC.RTN – error raising, other VERSION routines – notes
	Programming language overview, writing a simple game
	Local applications, code rating, enrichment, AUTO.ID.START, SEARCH, jBASE file types, jstat
	File I/O
	Changing structure of a local application – amending field type
	Records locking
	Programming for enquiries
	Performance, code analysis, local fields, DYNAMIC.TEXT
	I-descriptors
	COB programming
	Linux
	Java and jRemote
	Conclusions

